Metody kauzální analýzy pro měření efektivity podpory prodeje

Maria Králová
Anotace

Název anglicky: Methods of causal analysis for measuring the sales support efficiency

Náklady společností na aktivity spojené s podporou prodeje jsou v rozvinutých ekonomikách čím dál vyšší, přitom ale z mnoha studií plyne, že mnohé aktivity na podporu prodeje generují zanedbatelný, žádný, nebo dokonce záporný zisk. Jednou z možných příčin tohoto nežádoucího jevu jsou nedostatečné analytické nástroje, které by umožňovaly efektivitu aktivit na podporu prodeje spolehlivě měřit. Běžně používané nástroje vedou k potencionálně vychýleným odhadům efektu podpůrných aktivit, a to kvůli nezohledněnému vlivu mnoha faktorů, které se v čase mění, mohou ovlivňovat ukazatele ziskovosti a nejsou při odhadování pod kontrolou. V monografii je představen nový přístup k odhadování základních tržeb (tedy tržeb, jaké by byly, kdyby se akce na podporu prodeje nekonala) pomocí metod kauzální analýzy. Tento přístup odstraňuje vychýlení odhadů z důvodu v čase se měnících faktorů, přitom stále zůstává dostatečně jednoduchý na to, aby mohl být implementován do běžné firemní praxe. V monografii jsou dále představeny metody kauzální analýzy, které mohou řešit mnohé problémy z oblasti marketingu a managementu, a přesto se v těchto oblastech jak v českém, tak i světovém kontextu téměř nepoužívají.

Více informací

E-kniha (PDF)

ISBN-13 978-80-210-9940-1
Počet stran 172
Rok vydání 2021
Pořadí vydání 1., elektronické
doi https://doi.org/10.5817/CZ.MUNI.M210-9940-2021

Brožovaná vazba

ISBN-13 978-80-210-9939-5
Formát 167 mm×240 mm
Počet stran 172
Rok vydání 2021
Pořadí vydání 1.

Obecné informace

Klíčová slova kauzální analýza , propenzitní skóry , podpora prodeje , základní tržby
Jazyky Čeština
Reference

ABADIE, A. a G., W. Imbens. (2006). Large Sample Properties of Matching Estimators for Average Treatment Effects. Econometrica, 74(1), 235-267. https://doi.org/10.1111/j.1468-0262.2006.00655.x

ABRAHAM, M., M. a L., M. Lodish. (1993). An Implemented System for Improving Promotion Productivity Using Store Scanner Data. Marketing Science, 12(3), 248-269. https://doi.org/10.1287/mksc.12.3.248

AILAWADI, K., Harlam, B., A., Cesar, J., a D. Trounce. (2006). Promotion Profitability for a Retailer: The Role of Promotion, Brand, Category, and Store Characteristics. Journal of Marketing Research, 43(4), 518-535. https://doi.org/10.1509/jmkr.43.4.518

 

AILAWADI, K. a S. Gupta. (2014). Sales Promotions. In R., S. Winer and S., A. Neslin (Eds), History of Marketing Science (pp. 463-497). Singapore. https://doi.org/10.1142/9789814596480_0017

ANGRIST, J., D., Imbens, G., W. a D., B. Rubin. (1996).Identification of Causal Effects Using Instrumental Variables. Journal of the American Statistical Association, 91(434), 444-455. https://doi.org/10.1080/01621459.1996.10476902

ANGRIST, J., D. a J., S. Pischke. (2009). Mostly Harmless Econometrics. An Empiricist's Companion. Princeton University Press. https://doi.org/10.1515/9781400829828

ARONOW, P., M. a A. Carnegie. (2013). Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable. Political Analysis, 21(4), 492-506. https://doi.org/10.1093/pan/mpt013

ATAMAN, B., Mela, C., F. a H. Van Heerde. Building Brands. (2008). Marketing Science, 27(6), 1036-1054. https://doi.org/10.1287/mksc.1080.0358

BELLONI, A., Chernozhukov, V. a Ch. Hansen. (2014). High-Dimensional Methods and Inference on Structural and Treatment Effects. Journal of Economic Perspectives, 28(2), 29-50. https://doi.org/10.1257/jep.28.2.29

BLATTBERG, R., C. a R. Briesch. (2012). Sales Promotions. In Ö. Özalp & R. Phillips (Eds.), The oxford handbook of pricing management (pp. 585-619). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199543175.013.0024

BLATTBERG, R., C., Kim, B.-D. a J. Ye. (1996). Defining Baseline Sales in a Competitive Environment. Seoul Journal of Business, 2(1), 1-38.

BOSTON CONSULTING GROUP. (2014). Making big data work: Retailing. URL https://www.bcgperspectives.com/content/articles/retail_pricing_making_big_data_work_retailing/.

BOSTON CONSULTING GROUP. (2015). How retailers can improve promotion effectiveness. URL https://www.bcg.com/publications/2015/retail-pricing-how-retailers-can-improve-promotion-effectiveness.aspx.

BOSTON CONSULTING GROUP. (2018). Improving promotional effectiveness. URL https://www.bcg.com/expertise/industries/retail/improving-promotional-effectiveness.aspx.

BOUND, J., Jaeger, D., A., a R., B. Baker. (1995). Problems with Instrumental Variable Estimation when the Correlation Between the Instruments and the Endogenous Explanatory Variable is Weak. Journal of the American Statistical Association, 90, 443-450. https://doi.org/10.1080/01621459.1995.10476536

BREUER, P., Elliott, B. a S. Rickert. (2013). The power of advanced analytics in revenue management. McKinsey&Company. URL https://www.mckinsey.com/ /media/mckinsey/dotcom/client_service/retail/articles/perspectives%20-%20winter%202013/power_of_advanced_analytics_in_revenue_management_periscope%20vf.ashx.

BROWN, K., Merrigan, P., a J. Royer. (2018). Estimating Average Treatment Effects With Propensity Scores Estimated With Four Machine Learning Procedures: Simulation Results in High Dimensional Settings and With Time to Event Outcomes. Econometrics: Econometric & Statistical Methods - General eJournal. https://doi.org/10.2139/ssrn.3272396

BRYNJOLFSSON, E., Hitt, L., M., a H., H. Kim. (2011). Strength in numbers: How does data-driven decisionmaking affect firm performance? DOI http://dx.doi.org/10.2139/ssrn.1819486. https://doi.org/10.2139/ssrn.1819486

BUDÍKOVÁ, M., Králová, M. a B. Maroš. (2010). Průvodce základními statistickými metodami. Grada Publishing, Praha.

COOK, T., D. (2008). 'Waiting for Life to Arrive': A History of the Regression Discontinuity Design in Psychology, Statistics and Economics. Journal of Econometrics, 142(2), 636-654. https://doi.org/10.1016/j.jeconom.2007.05.002

DATTA, H., Knox, G. a B., J. Bronnenberg. (2018). Changing Their Tune: How Consumers' Adoption of Online Streaming Affects Music Consumption and Discovery. Marketing Science, 37(1), 5-21. https://doi.org/10.1287/mksc.2017.1051

DAVENPORT, T., H., Harris, J., G., a R. Morison. (2010). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Press.

DIAMOND, A. a J., S. Sekhon. (2013). Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies. The Review of Economics and Statistics, 95(3), 932-945. https://doi.org/10.1162/REST_a_00318

FRÖLICH, M. (2007).

Nonparametric IV Estimation of Local Average Treatment Effects with Covariates. Journal of Econometrics, 139, 35-75. https://doi.org/10.1016/j.jeconom.2006.06.004

GEDENK, K., Neslin, S., A. a K., L. Ailawadi. (2010). Sales Promotion. Retailing in the 21st century. Springer, Berlin Heidelberg, 393-407. https://doi.org/10.1007/978-3-540-72003-4_24

GÓMEZ, M., I., Rao, V., R. a E., W. McLaughlin. (2007). Empirical Analysis of Budget and Allocation of Trade Promotions in the US Supermarket Industry. Journal of Marketing Research, 44(3), 410-424. https://doi.org/10.1509/jmkr.44.3.410

GREENLAND, S., Pearl, J. a J., M. Robins. (1999). Causal Diagrams for Epidemiologic Research. Epidemiology, 10, 37-48. https://doi.org/10.1097/00001648-199901000-00008

GU, X. a P., R. Rosenbaum. (1993). Comparison of Multivariate Matching Methods: Structures, Distances and Algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420. https://doi.org/10.1080/10618600.1993.10474623

HAHN, J., Todd, P. a W. Van Der Klaauw. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209. https://doi.org/10.1111/1468-0262.00183

HAMILTON, B., H. a J., A. Nickerson. (2003). Correcting for Endogeneity in Strategic Management Research. Strategic Organization, 1(1), 51-78. https://doi.org/10.1177/1476127003001001218

HARTMANN, W., Nair, H., S. a S. Narayanan. (2011). Identifying Causal Marketing Mix Effects Using a Regression Discontinuity Design. Marketing Science, 30(6), 1079-1097. https://doi.org/10.1287/mksc.1110.0670

HECKMAN, J., J., Ichimura, H., a P., E. Todd. (1997). Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme. Review of Economic Studies, 64(4), 605-654. https://doi.org/10.2307/2971733

HIRANO, K., Imbens, G., W. a G. Ridder. (2003). Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score. Econometrica, 71(4), 1161-1189. https://doi.org/10.1111/1468-0262.00442

HO, D., E., Imai, K., King, G. a E., A. Stuart. (2011). MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. Journal of Statistical Software, 42(8), 1-28. URL http://www.jstatsoft.org/v42/i08/. https://doi.org/10.18637/jss.v042.i08

HOLLAND, P., W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81(396), 945-960. https://doi.org/10.1080/01621459.1986.10478354

HONG, H. a D. Nekipelov. (2010). Semiparametric Efficiency in Nonlinear LATE Models. Quantitative Economics, 1(2010), 279-304. https://doi.org/10.3982/QE43

HUBER, M., Lechner, M. a G. Mellace. (2016). The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence. Journal of Business a Economic Statistics, 34(1), 139-160. https://doi.org/10.1080/07350015.2015.1017644

IMAI, K., Keele, L. a T. Yamamoto. (2010). Identification, Inference and Sensitivity Analysis for Causal Mediation Effects. Statistical Science, 25(1), 51-71. https://doi.org/10.1214/10-STS321

IMBENS, G., W. (2004). Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review. The Review of Economics and Statistics, 86(1), 4-29. https://doi.org/10.1162/003465304323023651

IMBENS, G., W. a J., D. Angrist. (1994). Identification and Estimation of Local Average Treatment Effects. Econometrica, 62(2), 467-475. https://doi.org/10.2307/2951620

IMBENS, G., W., a T. Lemieux. (2008). Regression Discontinuity Designs: A Guide to Practice. Journal of Econometrics, 142(2), 615-635. https://doi.org/10.1016/j.jeconom.2007.05.001

IMBENS, G., W. a D., B. Rubin. (2009). Causal Inference in Statistics and the Social Sciences (1 ed.). Cambridge and New York: Cambridge University Press.

IMBENS, G., W. a D., B. Rubin. (2015). Causal Inference for Statistics, Social, and biomedical Sciences An Introduction. New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139025751

IMBENS, G., W. a J., M. Wooldridge. (2009). Recent Developments in the Econometrics of Program Evaluation, Journal of Economic Literature, 47(1), 5-86. https://doi.org/10.1257/jel.47.1.5

JETTA, K. a E., W. Rengifo. (2011). A Model to Improve the Estimation of Baseline Retail Sales. Journal of CENTRUM Cathedra, 4(1), 10-26. https://doi.org/10.7835/jcc-berj-2011-0048

KIMES, S., E. a U. Dholakia. (2011). Restaurant Daily Deals: Customers' Responses to Social Couponing. Cornell Hospitality Report, 11(20), 6-18. URL https://scholarship.sha.cornell.edu/cgi/viewcontent.cgi?article=1071&context=chrpubs.

KLEIBER, Ch. a A. ZEILEIS. (2008). Applied Econometrics with R. Springer-Verlag, New York. URL https://CRAN.R-project.org/package=AER. https://doi.org/10.1007/978-0-387-77318-6

KOTLER, P., T. a G. Armstrong. (2014). Principles of Marketing. Pearson education.

KOTLER, P., T. a K., L. Keller (2011). Marketing Management. Pearson Prentice Hall, 14th edition.

LECHNER, M. (2001). Identification and Estimation of Causal Effects of Multiple Treatments under the Conditional Independence Assumption. In Lechner, M. a F. Pfeiffer (Eds.), Econometric Evaluation of Labour Market Policies (pp. 43-58). Heidelberg and New York: Physica; Mannheim: Centre for European Economic Research. https://doi.org/10.1007/978-3-642-57615-7_3

LEE, D., S. a T. Lemieux. (2010). Regression Discontinuity Designs in Economics, Journal of Economic Literature, 48(2), 281-355. https://doi.org/10.1257/jel.48.2.281

MAGID, M., A. a L., M. Lodish. (1990). Getting the Most out of Advertising and Promotion. Harvard Business Review, (May-June issue), 50-60.

MANSKI, Ch., F. (2007). Identification for Prediction and Decision. Harvard University Press, Cambridge and London.

McAFEE, A. a E. Brynjolfsson. (2012). Big Data: The Management Revolution. Harvard Business Review, (October issue), 60-68.

MONETA, A. a F. Russo. (2014). Causal Models and Evidential Pluralism in Econometrics. Journal of Economic Methodology, 21(1), 54-76. https://doi.org/10.1080/1350178X.2014.886473

NAGYOVÁ, J. (1999). Marketingová komunikace není pouze reklama. VOX, Praha.

PAUWELS, K., Hanssens, D., M. a S. Siddarth. (2002). The Long-Term Effects of Price Promotions on Category Incidence, Brand Choice, and Purchase Quantity. Journal of Marketing Research, 39(4), 421-439. https://doi.org/10.1509/jmkr.39.4.421.19114

PEARL, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, New York and Melbourne.

PETERSEN, M., Porter, K., Gruber, S., Wang, Y. a M. Laan. (2010). Diagnosing and Responding to Violations in the Positivity Assumption. Statistical methods in medical research, 21, 31-54. https://doi.org/10.1177/0962280210386207

R CORE TEAM (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

ROBINS, J., M. (1986). A New Approach to Causal Inference in Mortality Studies with Sustained Exposure Period - Application to Control of the Healthy Worker Survivor effect. Mathematical Modelling, 7, 1393-1512. https://doi.org/10.1016/0270-0255(86)90088-6

ROBINS, J., M., Hernán, M., A. a B., A. Brumback. (2000). Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology, 11, 550-560. https://doi.org/10.1097/00001648-200009000-00011

ROSENBAUM, P., R. (1989). Optimal Matching for Observational Studies. Journal of the American Statistical Association, 84(408), 1024-1032. https://doi.org/10.1080/01621459.1989.10478868

ROSENBAUM, P., R. (1995). Observational Studies. Springer Science+Business Media, New York. https://doi.org/10.1007/978-1-4757-2443-1

ROSENBAUM, P., R. (2002). Covariance Adjustment in Randomized Experiments and Observational Studies. Statistical Science, 17(3), 286-327. https://doi.org/10.1214/ss/1042727942

ROSENBAUM, P., R. a D., B. Rubin. (1983b). The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika, 70(1), 41-55. https://doi.org/10.1093/biomet/70.1.41

ROSENBAUM, P., R. a D., B. Rubin. (1985). Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score. The American Statistician, 39(1), 33-38. https://doi.org/10.1080/00031305.1985.10479383

RUBIN, D., B. (1973a). Matching to Remove Bias in Observational Studies. Biometrics, 29(1), 159-183. https://doi.org/10.2307/2529684

RUBIN, D., B. (1973b). The Use of Matched Sampling and Regression Adjustment to Remove Bias in Observational Studies. Biometrics, 29(1), 184-203. https://doi.org/10.2307/2529685

RUBIN, D., B. (1974). Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. Journal of Educational Psychology, 66(5), 688-701. https://doi.org/10.1037/h0037350

RUBIN, D., B. (1977). Assignment to Treatment Group on the Basis of a Covariate. Journal of Educational Statistics, 2(1), 1-26. https://doi.org/10.3102/10769986002001001

RUBIN, D., B. (1979). Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies. Journal of the American Statistical Association, 74(366), 318-328. https://doi.org/10.2307/2286330

RUBIN, D., B. (1980). Comment on: Randomization aAnalysis of Experimental Data: The Fisher Randomization tTest. Journal of the American Statistical Association, 75(371), 591-593. https://doi.org/10.2307/2287653

RUBIN, D., B. (1990). Formal Mode of Statistical Inference for Causal Effects. Journal of Statistical Planning and Inference, 25(3), 279-292. https://doi.org/10.1016/0378-3758(90)90077-8

RUBIN, D., B. a N. Thomas. (2000). Combining Propensity Score Matching with Additional Adjustments for Prognostic Covariates. Journal of the American Statistical Association, 95(450), 573-585. https://doi.org/10.1080/01621459.2000.10474233

RUBIN, D., B. a R., P. Waterman. (2006). Estimating the Causal Effects of Marketing Interventions Using Propensity Score Methodology. Statistical Science, 21(2), A Special Issue on Statistical Challenges and Opportunities in Electronic Commerce Research, 206-222. https://doi.org/10.1214/088342306000000259

SÄVJE, F., Higgins, M., J. a J., S. Sekhon. (2017). Generalized Full Matching, arXiv 1703.03882. URL https://arxiv.org/abs/1703.03882.

SEKHON, J., S. (2011). Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R. Journal of Statistical Software, 42(7), 1-52. URL http://www.jstatsoft.org/v42/i07/. https://doi.org/10.18637/jss.v042.i07

SILVA, M. (2012). Business models to create Customer Loyalty and Generate Profitability: Groupon's Case [dizertační práce]. URL https://repositorio.ucp.pt/bitstream/10400.14/12038/1/MasterThesisMartaSilva2012.pdf.

SUCHÁNEK, P. a M. KRÁLOVÁ. (2016a). Vztah spokojenosti zákazníka a výkonnosti podniku. Trendy v podnikání - Business Trends, Plzeň: Fakulta ekonomická ZČU v Plzni, 6(2), 3-11.

SUCHÁNEK, P. a M. KRÁLOVÁ. (2016b). Concept of Customer Satisfaction within the Structural Equation Modeling - Measurement Part. In Olexová, C. a M. Janošková. Marketing Management, Trade, Financial and Social Aspects of Business: Conference Proceedings of the 4th International Scientific Conference, 231-237, Košice: Faculty of Business Economics with seat in Košice.

THISTLETHWAITE, D., L. a D., T. Campbell. (1960). Regression-Discontinuity Analysis: An Alternative to the Ex-post Facto Experiment. Journal of Educational Psychology, 51(6), 309-317. https://doi.org/10.1037/h0044319

Van der KLAAUW, W. (2008). Regression Discontinuity Analysis: A Survey of Recent Developments in Economics, Labour, 22(2), 219-245. https://doi.org/10.1111/j.1467-9914.2008.00419.x

Van der WAL, W., M. a R., B. Geskus (2011). ipw: An R Package for Inverse Probability Weighting. Journal of Statistical Software, 43(13), 1-23. URL http://www.jstatsoft.org/v43/i13/. https://doi.org/10.18637/jss.v043.i13

VYTLACIL, E. (2002). Independence, Monotonicity and Latent Variable Models: an Equivalence Result, Econometrica, 70, 331-341. https://doi.org/10.1111/1468-0262.00277

WANG, R. (2011). What CIO's And CMO's Should Know About Daily Deal Sites Such As Groupon. Forbes. URL https://www.forbes.com/sites/ciocentral/2011/04/08/what-cios-and-cmos-should-know-about-daily-deal-sites-such-as-groupon/#769bb1c047b7 .

YOSHIDA, K. a J. Bohn. (2018). tableone: Create 'Table 1' to Describe Baseline Characteristics. URL https://CRAN.R-project.org/package=tableone.

ZEILEIS, A. (2006). Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software, 16(9), 1-16. URL http://www.jstatsoft.org/v16/i09/. https://doi.org/10.18637/jss.v016.i09

 

Podobné publikace