var textForPages = ["MASARYKOVA UNIVERZITA Přírodovědecká fakulta Letní elektrochemická škola Summer electrochemical school","2 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009 Spolupořadatelem a sponzorem akce je firma Metrohm http://www.metrohm.cz/ © 2014 Masarykova univerzita ISBN 978-80-210-6827-8 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","3 Úlohy pro letní elektrochemickou školu 1. POTENCIOMETRICKÁ TITRACE (Iveta Pilařová, Romana Ševčíková) Stanovení protonačních konstant adeninu str. 4 2. VOLTAMETRIE NA SOLID STATE ELEKTRODÁCH (Rudolf Navrátil, Mehdi Ravandeh) Elektrochemická detekce purinových derivátů na pencil grafitové elektrodě str. 10 3. ELIMINAČNÍ VOLTAMETRICKÁ PROCEDURA (EVP) (Libuše Trnková, Libor Gurecký) Aplikace různých eliminačních funkcí na vybrané voltametrické křivky str. 15 4. KOROZE (Libor Gurecký, Libuše Trnková) Stanovení korozní rychlosti pro vzorky oceli Tafelovou metodou str. 20 5. ELEKTROCHEMICKÁ IMPEDANČNÍ SPEKTROSKOPIE (EIS) (Peter Barath, Vimal Sharma) EIS adeninu na nemodifikovaných a modifikovaných grafitových elektrodách str. 26 Summer electrochemical school tasks 1. POTENTIOMETRIC TITRATION (Iveta Pilařová, Romana Ševčíková) Determination of protonation constants of adenine p. 4 2. VOLTAMMETRY ON SOLID STATE ELECTRODES (Rudolf Navrátil, Mehdi Ravandeh) Electrochemical detection of purine derivatives on pencil graphite electrode p. 10 3. ELIMINATION VOLTAMMETRIC PROCEDURE (EVP) (Libuše Trnková, Libor Gurecký) The application of different elimination functions to chosen voltammetric curves p. 15 4. CORROSION (Libor Gurecký, Libuše Trnková) Determination of corrosion rate of chosen steel samples p. 20 5. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) (Peter Barath Vimal Sharma) EIS of adenine on unmodified and modified graphite electrodes p. 26 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","4 POTENTIOMETRIC TITRATION Determination of protonation constants of adenine Potentiometry is one of the most simple electroanalytical techniques, being primarily used for pH measurements in different samples and for the determination of ionic constituents in biological fluids (e. g. blood, urine), but also as a transduction mode in monitoring selective interactions in molecular sensor devices or in the course of chemical reactions. One of the major types of potentiometry, potentiometric titration is based on the monitoring of the working electrode potential change as a function of the reagent addition to the sample. Potentiometric methods are used for different types of titration (e.g. acidobasic titrations, complexing, redox, precipitation). The result is the potentiometric titration curve of the characteristic sigmoidal shape and the titration endpoint is determined by using different mathematical methods, such as second derivative of titration points, linearization of titration curve (Gran’s method), calculation of polynom (Samsonk’s method)[1,2]. Potentiometric titration is suitable method for the investigation of protonation – deprotonation equilibrium of biologicaly important compounds (purine derivatives, cytokinins, etc.) and it enables very precisely determination of protonation constants pK a. Adenine (6-aminopurine) is one of the two most commonly occurring purines in a ribonucleic acid (RNA) and deoxyribonucleic acid (DNA), and thus is involved in the process of protein synthesis and transmission of genetic information. The knowledge of its protonation equilibrium is very important not only in biochemical processes and in electroanalysis, but also for the study of metal complexes in which adenine takes the role of the ligand. Adenine exhibits two dissociation constants (pK a1 = 4.12 and pK a2 = 9.83) [3] Fig.1: Protonation-deprotonation of adenine APPARATUS, ACCESSORIES AND REAGENTS automatic titrator Titrando 835 (Metrohm, Switzerland), thermostat Julabo F25 – EH Tiamo 01/02 software (Metrohm, Switzerland) combined ion – selective electrode LL Ecotrode plus Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","5 potentiometric vessel argon factorized NaOH; HCl; NaCl; milli Q water (18.2 MΩ·cm, 25 °C) adenine SOLUTIONS Stock solutions -3 c (NaOH) = 0.1 mol/L; c (HCl) = 0.1 mol/L; c (NaCl) = 1 mol/L; c (adenine) = 1·10 mol/L The LL Ecotrode plus electrode calibration 5 mL of HCl + 4.5 mL of NaCl + 40.5 mL of milli Q water Sample measurement 0.5 mL of HCl (0,1mol/L) + 5 mL of adenine (mmol/L) + 4.95 mL of NaCl (1 mol/L) + 39.55 mL of milli Q water EXPERIMENT The LL Ecotrode plus electrode calibration 5 mL of HCl (0.1mol/L); 4.5 mL of NaCl (1mol/L) + 40.5 mL of milli Q water Sample measurement 0.5 mL of HCl (0.1mol/L) + 5 mL of adenine (mmol/L) + 4.95 mL of NaCl (1 mol/L) +39.55 mL of milli Q water PARAMETERS 1) Electrode calibration: the addition of standard titrant solution (0.1M NaOH) = 0.01 mL ; the total volume of 0.1M NaOH = 10 mL; the dosing rate is “maximal” and the titration mode is set as “optimal”. Other parameters are “0” or “off” 2) Sample measurement: the addition of 0.1M NaOH = 0.001 mL; the total volume of 0.1M NaOH = 1 mL; the dosing rate is “maximal” and the titration mode is set as “optimal”. Other parameters are “0” or “off” Inert atmosphere ensured by bubbling with argon (99.999%) and stirring (magnetic stirrer, speed 3); temperature 25 °C. MEASUREMENT a) Start PC, open Tiamo 1.2 software (see manual below) and clean the automatic burette system with standard titrant solution (10 mL of 0.1 mol/L NaOH). Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","6 b) Prepare measured solution (for electrode calibration or sample measurement) in the vessel, put LL Ecotrode and dosing capillary into the vessel. Ensure inert atmosphere (bubbling and stirring). c) Set titration parameters in the selected method. d) Start the measurement. e) Record the titration curve and export data. Note: LL Electrode plus is filled by 3M KCl, the filing hole should be opened during the measurement. After measurement don´t let the electrode for long time in basic solution, clean it and put it in stock solution (3M KCl). POTENTIOMETRIC CURVE EVALUATION The acidic part of calibration curve is used for determination the slope (q) and 0 equilibrium potential (E ) by linear regression. The equivalence point allows to calculate concentration of HCl. The basic part of calibration curve help to calculate pK w (should be for o temperature 25 C about 13.78). All these values are important for calculation of pH and degree of titration z and subsequently of pKa value based on these equations: z 1 z pKa log H log log A pKa log H log log A 1 2 1 z HA z A c NaOH V ekv c NaOH V H OH V V z celk c L V celk V Adenine 250 200 150 100 E/mV 50 0 -50 0 0.2 0.4 0.6 0.8 1 1.2 -100 -150 -200 -250 -300 V/mL Fig.1: An example of measured data - titration curve of adenine in water Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","7 RESULTS AND REPORT Calibration Measuring slope q E 0 pK a1 pK a2 1. 2. 3. REFERENCES [1] Mermet J.-M., Kellner R. et al, Analytical Chemistry, Wiley-VCH, 2004 [2] Zýka J., Analytická Příručka, SNTL, 1980 [3] D.D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965 [4] Lippert B., Gupta D., Promotion of rare nucleobase tautomers by metal binding, Dalton Transactions, 2009 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","8 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","9 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","10 VOLTAMMETRY ON SOLID STATE ELECTRODES Electrochemical detection of purine derivatives on the pencil graphite electrode Linear sweep voltammetry (LSV) is one of most used electrochemical methods. It requires a good potentiostat and three electrode set, which consists of a working electrode, an auxiliary electrode, and a reference electrode. The current is measured between the working and an auxiliary electrode while the potential between the working electrode and a reference electrode is swept linearly in time. The slope of the potential vs. time is called the scan rate v and the polarization process can be described by the equation: E = E initial + vt. The oxidation or reduction processes of electro-active species are registered as current maxima (peaks I p) providing the determination of their concentration in solutions. 5 1/2 1/2 I p=2.99·10 n(αn a) AD cv 1/2 (Delahay equation) Where: I p stands for the current peak, n stands for the number of electrons participating in reaction and n a for the number of electrons participating in a rate determining step, α is the electron transfer coefficient, A is the effective area of electrode, D is the diffusion coefficient, c is the concentration, v is the scan rate. Purines provide on the pencil graphite electrode (PeGE) in voltammetry well readable oxidation signals. Our research showed that the oxidation response of purines can be increased by using an electro-catalytical effect of monovalent copper ions. Cu(I)ions, obtained by the reduction of Cu(II) in situ on PeGE surface, are capable to form a Cu(I)-purine complex and this complex increases surface concentration of the purine studied. Thus, the electroanalysis of adenine, guanine or xanthine with the use of monovalent copper are based on: 1) the electrochemical reduction of Cu(II) at potential -0.1 V, 2) the formation of Cu(I)- purine complex, 3) the oxidation of complex at potentials closed to 0.5 V, 4) the oxidation of purine whose signal is higher than one without the presence of copper ions. The application of copper ions in voltammetric experiments contributes to significant decrease of the detection limit of purine [1-3]. APPARATUS, ACCESSORIES AND REAGENTS AUTOLAB PGS30 Analyzer (EcoChemie, Netherlands) NOVA software (Metrohm, Switzerland) Electrodes (working - PeGE with leads Tombow, 0.5 mm, reference – Ag/Ag Cl/3M KCl, counter electrode – Pt); voltammetric vessel argon phosphate-acetate buffer pH 5.5; c (CH 3COOH) = 0.4 mol/L, c (H 3PO 4) = 0.4 mol/L, c(NaOH) = 2 mol/L adenine, guanine or other purine derivative, copper sulphate; miliQ water (18.2 MΩ·cm) Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","11 SOLUTIONS Supporting electrolyte phosphate-acetate buffer pH 5.5; c (CH 3COOH) = 0.4 mol/L, c (H 3PO 4) = 0.4 mol/L, -3 c(NaOH) = 2 mol/L; CuSO 4 = 1·10 mol/L Samples -3 adenine, guanine or xanthine (stock solution = 1·10 mol/L) EXPERIMENT Voltammetric experiment of purine derivate in the absence of copper ions 2 mL supporting electrolyte + 8 mL miliQ H 2O + 100 µL purine Voltammetric experiment of purine derivative in the presence of copper ions 2 mL supporting electrolyte + 8 mL miliQ H 2O + 100 µL of purine + 100 µL Cu(II) PARAMETERS (CV OR LSV - CYCLIC OR LINEAR SWEEP VOLTAMMETRY) LSV measurement Start potential -0.1 V; stop potential -0.2 V; upper vertex potential 1.4 V; lower vertex potential -0.1 V; scan rate 200 (400, 800) mV/s; time of accumulation 120 s, room temperature MEASUREMENT a) Clean voltammetric vessel (diluted nitric acid, than miliQ water); add 2 mL of supporting electrolyte, 8 mL miliQ H 2O and 100 µL of Adenine or Guanine. b) Insert working electrode into pencil and connect all electrodes. c) Perform three electrode set into the measuring vessel with solution of sample. d) Record the voltammogram with the specified voltammetric parameters. e) Smooth voltammetric curves by Savitzky-Golay filter (level 2). f) Save the smoothed curves. g) Add 100 µL of Cu(II) solution into solution of sample and record LSV curves with the specified parameters. h) Smooth voltammetric curves by Savitzky-Golay filter (level 2). i) Save the smoothed curves. j) Load overlay total voltammograms from all experiments and compare them. CURVE EVALUATION Evaluate the peak potential and the peak height of the purine derivative (adenine, guanine or xanthine) in the absence and in the presence of Cu(II) ions. 200 LSV xanthin 150 Fig. 1: Real voltammogram of I[uA] 100 purine (Xan in the absence (dashed line) and in presence (full 50 line) of Cu(II) ions 0 -100 400 E[mV] 900 1 400 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","12 a) The evaluation of CV peak height and peak potential for both measurements (with and without Cu(II) ions) for different scan rates (from 50mV/s to 800 mV/s per 50 mV/s). b) The assessment of the influence of scan rate and Cu(II) ions on peak height and potential. c) The determination of rate determining step in oxidation of adenine or guanine (see Delahay equation). d) The evaluation of oxidation process of purine derivative without Cu(I) and with Cu(I) RESULTS without Cu with Cu scan rate E (V) I(A) scan rate E (V) I(A) (mV/s) (mV/s) REFERENCES [1] Kounaves, Samuel P. Voltammetric Techniques. Handbook of Instrumental Techniques for Analytical Chemistry. pp. 709–725. [2] Aladag N., Voltammetric Study of Aminopurines on a Pencil Graphite Electrode in the Presence of Copper Ions, Electroanalysis, 2010 [3] Farias P.A.M., Ultratrace Determination of Adenine in the Presence of Copper by Adsorptive Stripping Voltammetry, Talanta, 2001 [4] Jelen. F., Voltammetric Study of Adenine Complexes with Copper on Mercury Electrode, Electroanalysis, 2009 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","13 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","14 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","15 ELIMINATION VOLTAMMETRIC PROCEDURE (EVP) The application of different elimination functions to chosen voltammetric curves The elimination voltammetric procedure (EVP) is a mathematical processing of voltammetric data enabling achievement of better sensitivity and detection limits of studied compounds compared to voltammetric methods on which it relies. It works with elimination voltammetric functions (EVF), eliminating or conserving some chosen partial currents. EVP is based on different dependences of these partial currents on scan rate. In other words, the variable parameter is the scan rate and EVF are presented as linear combinations of total currents measured at different scan rates. In EVP must be satisfied two necessary conditions: 1) An eliminated current can be expressed as a product of two independent functions - the scan rate function and electrode potential function. I j Y j (E ) W j ( ) where Y j(E) is potential function and W j(ν) is scan rate function. 2) A total voltammetric current is expressed as a sum of partial currents. n I I j I d I c I k ... j 1 where I d is the diffusion current, I c the charging current and I k the kinetic current. Advantages of the approach consist in simplicity and availability. EVP is not time consuming procedure and it is able: (i) to provide better sensitivity, (ii) uncover of minor processes hidden in major processes, (iii) to extend potential range and (iv) to yield new information about electrode processes. The interaction of partial currents can be considered as a partial drawback. This disadvantage is sometimes reflected in an elimination signal distortion, as for example in the case of strongly adsorbed electroactive substances. Then the disadvantage is changed in the advantage because the elimination signal is much more higher and has the form (peak-counterpeak) which does not need a baseline correction [1]. peak-counterpeak Fig.1: A substance transported Fig.2: A totally adsorbed to an electrode only by diffusion electroactive substances Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","16 I ref – reference current, f (I) – the aplication of the elimination function E4 (I k +I c elimination and I d conservation), the values on the axe x are dimensionless. elimination function E4: f (I) = a 1I (v1/2) + a 2I (v) + a 3I (v2) f(I) = – 11.657I 1/2 + 17.485I – 5.8284I 2 Export data from NOVA 1.10 (or GPES) to Excel. Use elimination voltammetric procedure EPV E4 for measured data PARAMETERS Scan rates with integer 2: e.g., 100, 200, 400 and 800 mV/s Elimination voltammetric functions with calculated coefficients f(I) Characteristics EVLS equation E1 I d≠0; I k=0 (I c dist. By 1.707) f(I) = -3.4142·I 1/2 + 3.4142·I E2 I d≠0; I c=0 (I k dist. By 2.414) f(I) = 4.8284·I 1/2 - 2.4142·I E3 I k≠0; I d=0 (I c dist. By -0.707) f(I) = 3.4142·I 1/2 - 2.4142·I E4 I d≠0; I k=0; I c =0 f(I) = -11.657·I 1/2 + 17.485·I - 5.8284·I 2 E5 I k≠0; I d=0; I c =0 f(I) = 6.8284·I 1/2 - 8.2426·I + 2.4142·I 2 E6 I c≠0; I d=0; I k =0 f(I) = 4.8284·I 1/2 - 8.2426·I + 3.4142·I 2 CURVE EVALUATION Evaluate the EVP curves of the adenine in the absence and in the presence of Cu(II) ions f ( I) EVP I Fig. 3:Dependence of elimination current coefficient EVP on scan rate coefficient x for EVFs Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","17 RESULTS without Cu with Cu method I(A) method I(A) CV (LSV) CV (LSV) EVP EVP REFERENCES [1] Trnková L., Elimination Voltammetry with Linear Scan, J. Electroanal. Chem., 582 (2005) 258. [2] Trnková L., Application of Elimination Voltammetry with Linear Scan in Bioelectrochemistry, Reasearch Signpost, 2007 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","18 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","19 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","20 CORROSION Determination of corrosion rate of steel samples in different environments by linear polarization assessed by Tafel equation The simplest definition of corrosion is: It is the process of a metal returning to the material’s thermodynamic state. Most of the materials form the oxides or sulfides from which they were originally in the earth. In the other words, corrosion is the gradual destruction of materials (usually metals) by reduction-oxidation reactions: n+ o Anode: M - ne→ M - - Cathode: O 2 + 2H 2O + 4e → 4OH (in alkaline solutions) + - O 2 + 4H + 4e → 2H 2O (in acidic solutions) + 2H + 2e→ H 2 Fig. 1: The combination of anodic polarization curve with current density j a (metal ionization) and cathodic polarization curve with current density j c (cation reduction and hydrogen depolarization). The bold line represents the sum of both processes. Most corrosion phenomena are of electrochemical nature and consists of two (or more) electrode reactions on the surface of corroding material. One possible reaction is the oxidation of metal (e.g., metal or steel dissolution) refers to anodic partial reaction and the other one is the reduction reaction (e.g., reduction of oxygen) which refers to cathodic partial reaction. Non-electrochemical reaction between products of these reactions forms the final product (e.g., rust). To determine the corrosion rate, depending on kinetics of both cathodic and anodic reactions, we obey Faraday’s law, where the linear relationship exists between the metal dissolution rate at some potential and the partial anodic current density for metal dissolution. If there is no external polarization, the metal spontaneously gains a certain potential (corrosion potential – E corr) in contact with an oxidizing electrolytic environment. The partial anodic current density at the E corr refers to the corrosion current density i corr. E corr=i corr/nF Where n is the chargé number (number of electrons exchanged in dissolution reaction), F is the Faraday’s constant (F = 96.485 C/mol). The E corr can be obtained between the equilibrium potentials of the anodic and cathodic partial reactions, which could be predicted by electrochemical thermodynamics [1-3]. To slow down the corrosion rate we use several types of inhibitors. We distinguish these types of inhibitors: anodic, cathodic, mixed and volatile corrosion inhibitors (VCI). Anodic inhibitors usually form the protective oxide film on the metal surface. Cathodic inhibitors Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","21 slower the cathodic reaction or selectively precipitate on the surface area to decrease the diffusion of reducing substances to the surface. Mixed inhibitors reduce both cathodic and anodic reactions via film forming compounds. VCI (also called Vapor Phase Inhibitors) are compounds transported in a closed environment to the site of corrosion by vaporizing from the source [4]. Steel materials are subject to corrosion and loose some attributes caused by their oxidation depending on time. Studied material is subjected to linear polarization (LSV - Linear Sweep Voltammetry) and LSV curves are processed using the Tafel slope analysis providing not only a corrosion rate, but also a corrosion potential, a current density and a polarization resistance. These results enable to compare different corrosive materials and effects of corrosion accelerators or inhibitors in different environment. Linear polarization evaluation and Tafel slope analysis are described on http://www.ecochemie.nl/Applications/. CALCULATION OF CORROSION RATES The corrosion rate depends on the kinetics of both anodic (oxidation) and cathodic (reduction) reactions. According to Faraday's law, there is a linear relationship between the metal dissolution rate or corrosion rate, R M, and the corrosion current density i corr: M R i M nF corr The relationship between current density and potential of anodic and cathodic electrode reactions under charge transfer control is given by the Butler-Volmer equation: 2 .303 2 .303 i i corr (e b a e b c ) , where E E corr In the above equation E is the applied potential and i corr the measured current density. The overpotential, η, is defined as the difference between applied potential and the corrosion potential E corr. The corrosion potential, is the open circuit potential (OCP) of a corroding metal. The corrosion current, i corr, and the Tafel constants b a, and b c can be measured from the experimental data. APPARATUS, ACCESSORIES AND REAGENTS AUTOLAB PGSTAT101 (Metrohm Switzerland); Corrosion cell 400 ml (Metrohm, Switzerland), Thermostat F12 Julabo (Julabo, Germany) Software NOVA 1.10.2 (Metrohm, Switzerland) Electrodes (WE – sample (steel); RE – Ag/AgCl/3 M KCl; AE – Stainless steel or Pt) NaCl solution, c 1(NaCl) = 0.15 mol/L, c 2(NaCl) = 0.6 mol/L; mild steel sample (M r = 55,585) -3 Corrosion inhibitor: Adenine or caffeine (1*10 mol/L) SOLUTIONS Supporting electrolyte 0.15 M NaCl solution pH 5,75 0.6 M NaCl solution pH 5,88 Inhibitor solution :1m M adenine or caffeine Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","22 EXPERIMENT Measuring method: Linear sweep voltammetry (LSV), procedure in NOVA: linear polarization (with open circuit potential - OCP determination) PARAMETERS Measuring method: Linear sweep voltammetry (LSV) Start potential -0.3 V, stop potential 0.3 V, scan rate 5 or 10 m V/s, temperature 25 °C Make sure that there is no bubble at the end of the salt bridge after supporting electrolyte is poured inside the corrosion cell! MEASUREMENT a) There are sample of mild steel circuits available. Clean them by scratching the measuring side with sandpaper 21111 2/0 than wash it in acetone. b) Insert mild steel circuit into measuring cell and connect as working electrode c) Pour the supporting electrolyte (400 mL) into the corrosion cell and plug reference electrode and auxiliary electrode d) Set the temperature on the thermostat to 25 °C and wait until the temperature inside the corrosion cell is stabilized. e) Record the linear polarization voltammogram with the specified parameters. Save the voltammogram together with method parameters f) Repeat step a) to e) with all samples. CURVE EVALUATION Fig. 2: Real voltammograms comparison of mild steel samples in different environments: Saline solution (blue), 0.1 M H 2SO 4 (red). Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","23 RESULTS Ecor icor jcor Polarizationresistence Corrosion rate Solution [V] [A] [A/cm2] [Ω] [mm/year] 0.9 % NaCl 3.5 % NaCl 0.9 % NaCl + inhibitor 3.5 % NaCl + inhibitor 0.9 % NaCl + inhibitor 3.5 % NaCl + inhibitor REFERENCES [1] Schweitzer P.A., Fundamentals of Metallic Corrosion, CRC Press, 2007 [2] Kaesche H., Corrosion of Metals, Springer-Verlag Berlin Heidelberg, 2003 [3] Fontana M.G., Corrosion Engeneering, McGrawe-Hill Book Company, 1987 [4] Sastri V.S., Green Corrosion Inhibitors, John Wiley \& Sons, Inc, 2011 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","24 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","25 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","26 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) EIS of guanine on modified and unmodified graphite electrodes Electrochemical Impedance Spectroscopy (EIS) is a powerful technique for the characterization of electrochemical systems. The promise of EIS is that, with a single experimental procedure encompassing a sufficiently broad range of frequencies, the influence of the governing physical and chemical phenomena may be isolated and distinguished at a given applied potential. In recent years, EIS has found widespread applications in the field of characterization of materials. It is routinely used in the characterization of coatings, batteries, fuel cells, and corrosion phenomena. It has also been used extensively as a tool for investigating mechanisms in electro–deposition, electro–dissolution, passivity, and corrosion studies. It is gaining popularity in the investigation of diffusion of ions across membranes and in the study of semiconductor interfaces. Principles of EIS measurements The fundamental approach of all impedance methods is to apply a small amplitude sinusoidal excitation signal to the system under investigation and measure the response (current or voltage or another signal of interest1). In the following figure, a non-linear i-E curve for a theoretical electrochemical system is shown in Figure 1. Fig. 1: Potential and current modulation recorded during an impedance measurement A low amplitude sine-wave ∆E·sin(ωt), of a particular frequency ω, is superimposed on the DC polarization voltage Eo. This results in a current response of a sine wave superimposed on the DC current ∆i·sin(ωt+φ) . The current response is shifted with respect to the applied potential (see Figure 2). Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","27 Fig. 2: Time domain plots of the low amplitude AC modulation and response The Taylor series expansion for the current is given by: di d 2 i i E E 2 ..... dE dE 2 E o ,i o E o ,i o If the magnitude of the perturbing signal ∆E is small, then the response can be considered linear in first approximation. The higher order terms in the Taylor series can be assumed to be negligible. The impedance of the system can then be calculated using Ohms law as: E ( ) ( Z ) ( i ) This ratio is called impedance, Z(ω), of the system and is a complex quantity with a magnitude and a phase shift which depends on the frequency of the signal. Therefore by varying the frequency of the applied signal one can get the impedance of the system as a function of frequency. Typically in electrochemistry, a frequency range of 100 kHz – 0.1 Hz is used. The impedance Z(ω), as mentioned above is a complex quantity and can be represented in Cartesian as well as polar coordinates. In polar coordinates the impedance of the data is represented by: Z( ) Z( ) e Where |Z(ω)| is the magnitude of the impedance and is the phase shift. In Cartesian coordinates the impedance is given by: ( Z ) Z ( ) j Z ( ) Where Z'(ω) is the real part of the impedance and Z\"(ω) is the imaginary part and . Data presentation The plot of the real part of impedance against the imaginary part gives a Nyquist plot, as shown in Figure 3. The advantage of Nyquist representation is that it gives a quick overview of the data and one can make some qualitative interpretations. While plotting data in the Nyquist format the real axis must be equal to the imaginary axis so as not to distort the shape Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","28 of the curve. The shape of the curve is important in making qualitative interpretations of the data. The disadvantage of the Nyquist representation is that one loses the frequency dimension of the data. One way of overcoming this problem is by labeling the frequencies on the curve. The absolute value of impedance and the phase shifts are plotted as a function of frequency in two different plots giving a Bode plot in Figure 4. This is the more complete way of presenting the data. Fig. 3: A typical Nyquist plot Fig.4: A typical Bode plot A third data presentation mode involving a 3D plot, is available. In this presentation mode the real and imaginary components are plotted on the X and Y axis, respectively and the logarithm of the frequency is plotted on the Z axis (see Figure 5). Fig.5: 3D plot The relationship between the two ways of representing the data is given by: Z 2 Z 2 Z 2 ( Z ) tg( ) Z Alternatively, the real and imaginary components can be obtain from: Z Z cos and Z Z sin Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","29 APPARATUS, ACCESSORIES AND REAGENTS AUTOLAB PGSTAT20 Analyzer (Metrohm AUTOLAB, Netherlands) NOVA software 1.10 Electrodes (working - PeGE with leads Tombow, 0.5 mm, reference – Ag/Ag Cl/3M KCl, counter electrode – Pt); voltammetric vessel argon phosphate-acetate buffer pH 5.5; c (CH 3COOH) =0.4 mol/L, c (H 3PO 4)=0.4 mol/L, c(NaOH)=2 mol/L adenine; copper sulphate; miliQ water (18.2 MΩ·cm) SOLUTIONS Supporting electrolyte phosphate-acetate buffer pH 5.5; c (CH 3COOH) =0.4 mol/L, c (H 3PO 4)=0.4 mol/L, -3 c(NaOH)=2 mol/L, c(CuSO 4)=1·10 mol/L Samples -3 adenine = 1·10 mol/L; (or guanine) EXPERIMENT EIS experiment for adenine in the absence of copper ions – 2 mL supporting electrolyte + 8 mL miliQ H 2O + 100 µL adenine (guanine) PARAMETERS Measuring method potentiometric electrochemical impedance spectroscopy Start 0.1 V, End potential 1.2V, logarithmic step 0.2V Frequency 10 000- 0.1 Hz, 50 steps (logarithmic) RPM 0.1V MEASUREMENT a) Clean voltammetric vessel (diluted nitric acid, than miliQ water). Than we added in the vessel 2 mL of supporting electrolyte, 8 mL miliQ H 2O and 100 µL of adenine (guanine) b) Insert working electrode into pencil and connect all electrodes. c) Start potentiometric EIS d) Save data e) Data analysis, Fit and Simulation f) Insert equivalent circuit and Fit data g) Export results Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","30 Measured data Equivalent circuit Results Element Parameter Value R1 R 83.613 R2 R 9.4724 Q1 Y0 9.2585E-06 N 1.0198 Q2 Y0 6.8726E-06 N 0.94971 χ² 0.033201 REFERENCES [1] Metrohm Autolab, Application note EIS01 [2] Barsoukov E., Macdonald J. R.: Impedance spectroscopy. Theory, Experiment, and Applications. J. Wiley, New Jersey 2005. Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","31 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","32 DISCUSSION AND REMARKS Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","33 ACKNOWLEDGEMENT (a) CEITEC – Central European Institute of Technology Project CZ.1.05/1.1.00/02.0068 (b) MUNI/A/0972/2013 project (c) KONTAKT II (LH13053) of the Ministry of Education, Youth and Sports of the Czech Republic (d) Project POSTDOC I, reg. No. CZ.1.07/2.3.00/30.0009, The project is co- financed by the European Social Fund and the state budget of Czech Republic Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","34 • Founded in 1986 • Based in Utrecht, The Netherlands • Since 1999 part of the Metrohm Group • Introduced the first computer controlled potentiostat/galvanostat • Develops and produces the high quality Autolab range of products • Strong background in electrochemistry • Supported by the worldwide Metrohm distribution network • Three years factory warranty on all instruments • Dedicated to research Eco Chemie – Metrohm Autolab Eco Chemie was founded in 1986 and is since 1999 a member of the Metrohm group of companies. In 2009 the company name changed to Metrohm Autolab to reflect the customer oriented combination of the world- wide Metrohm sales and support organization and the high quality Autolab series of instruments developed by Eco Chemie. Metrohm Autolab is an ISO9001 certified company.. Metrohm Autolab based in Utrecht, The Netherlands, designs and manufactures Autolab instruments, acces- sories, and software for electrochemistry. Known for innovation, the Autolab was the first commer­ cial digital potentiostat/galvanostat, that was completely computer controlled. Our latest software package NOVA has again set a high standard for powerful electrochemical research software. With our background and knowledge in electrochemistry and our worldwide distributor network, our mission is to serve the research community all over the world by supplying state of the art instruments and unrivalled support. All Metrohm Autolab instruments are covered by a three year factory warranty. Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009","35 Všechna práva vyhrazena. Žádná část této elektronické knihy nesmí být reprodukována nebo šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu vykonavatele majetkových práv k dílu, kterého je možno kontaktovat na adrese – Nakladatelství Masarykovy univerzity, Žerotínovo náměstí 9, 601 77 Brno. Letní elektrochemická škola Summer electrochemical school Kolektiv autorů: Libuše Trnková, Peter Barath, Mehdi Ravandeh, Vimal Sharma, Iveta Pilařová, Romana Ševčíková, Rudolf Navrátil, Libor Gurecký Grafická úprava: Romana Ševčíková, Libor Gurecký Vydala Masarykova univerzita, Brno Vydání první, 2014 ISBN 978-80-210-6827-8 Zpracováno za přispění CEITEC, CZ. 1.05/1.1.00/02.0068, projektů: MUNI/A/0972/2013 a LH 13053 KONTAKT II od MŠMT ČR, POSTDOC I, No. CZ.1.07/2.3.00/30.0009"];