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Preface

This volume contains the proceedings of the 11th Doctoral Workshop on Mathe-
matical and Engineering Methods in Computer Science (MEMICS 2016) held in
Telč, Czech Republic, during October 21-23, 2016.

The aim of the MEMICS workshop series is to provide an opportunity for
PhD students to present and discuss their work in an international environment.
MEMICS focuses broadly at formal and mathematical methods in computer sci-
ence and engineering and their applications.

In addition to regular papers, MEMICS workshops traditionally invite PhD
students to submit a presentation of their recent research results that have already
undergone a rigorous peer-review process and have been presented at a high-
quality international conference or published in a recognized journal.

There were 28 submissions from PhD students. We received 14 regular pa-
pers; each one was thoroughly evaluated by at least three Program Committee
members, who also provided extensive feedback to the authors. This year, we also
organize a poster session presenting an ongoing work of students. In addition to
regular papers, we received 5 presentation abstracts, and 9 poster abstracts. We
accepted 9 regular papers, in addition to that the work described in other 2 regu-
lar papers will be presented, along with 5 presentations and 9 posters introducing
already published and ongoing work, respectively. The presentation abstracts are
also included in these proceedings.

The highlights of the MEMICS 2016 program includes three keynote lectures
delivered by internationally recognized researchers from various areas of computer
science. The speakers are:

– Armin Biere (Johannes Kepler University in Linz, Austria)
– Luca Bortolussi (University of Trieste, Italy)
– Roland Meyer (TU Kaiserslautern, Germany)

The MEMICS tradition of best paper awards continues also in the year 2016.
The best contributed paper, presentation, and poster will be selected during the
workshop, taking into account their scientific and technical contribution together
with the quality of presentation.

The successful organization of MEMICS 2016 would not have been possible
without generous help and support from the organizing institutions: Masaryk
University, Brno University of Technology, and Charles University.
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We thank the Program Committee members and the external reviewers for
their careful and constructive work. We thank the Organizing Committee mem-
bers who regularly help to create a unique and relaxed atmosphere that dis-
tinguishes MEMICS from other computer science meetings. We also gratefully
acknowledge the support of the EasyChair system and the great cooperation
with the EPTCS.

Last, but not least, we would like to thank to our sponsors:

– Lexical Computing
– Y Soft Corporation
– RedHat, Inc.

October 2016 Jan Kofroň
Jan Strejček
Lukáš Holík
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Invited Lectures—Abstracts

Bit-Blasting Considered Harmful

Armin Biere, Johannes Kepler University

Bit-precise reasoning is essential for many automated reasoning tasks and usually
relies on SMT solvers for the theory of fixed-width bit-vectors. After applying
simplification through rewriting these solvers usually rely on bit-blasting. The
resulting propositional problem is then handed to SAT solvers. On the theoretical
side we discuss the complexity of decision problems for bit-vectors. The main
argument is that bit-blasting is actually exponential. We discuss subclasses where
the exponential explosion is not immediate. On the practical side we show how
to use local search for bit-vectors, which avoids bit-blasting. This approach is
particularly effective on hard satisfiable bit-vector problems.

The machine learning way to formal verification

Luca Bortolussi, University of Trieste

Many current scientific and technological challenges are related to understanding,
design and control of complex systems, from epidemic spreading to performance
of computer systems, from biological networks to bike and car sharing. Our in-
terest is to study their emergent properties, starting from a stochastic Markov
model, with the machinery of formal verification. More precisely, the focus is on
the formalisation of such properties in a suitable logical language and on the
automatic verification of these properties in a given model (the so called model
checking problem), which in a probabilistic setting takes the form of computing
the probability with which such properties are satisfied. However, the models we
can construct are always uncertain, in particular in the value of their parameters,
due to lack of information and their phenomenological nature. To deal consistently
with such an uncertainty, we have combined formal verification techniques with
state-of-the-art Machine Learning statistical tools, based on Gaussian Processes.

We will show how to efficiently compute the satisfaction probability of a be-
havioural property when model parameters are unknown, but assumed to lie in
a bounded interval, a method we called Smoothed Model Checking. Combin-
ing these ideas with Bayesian Optimisation, we can then efficiently solve system
design problems, i.e. fixing controllable model parameters so that the system ro-
bustly exhibits a desired behaviour. This talk will be a gentle introduction to
these ideas.
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Summaries for Context-Free Games

Roland Meyer, TU Kaiserslautern

(based on joint work with Lukas Holik and Sebastian Muskalla) The motivation
of our work is to generalize the language-theoretic approach from verification to
synthesis. Central to language-theoretic verification are queries L(G) ⊆ L(A),
where G is a context-free grammar representing the flow of control in a recur-
sive program and A is a finite automaton representing (iterative refinements of)
the specification. When moving to synthesis, we replace the inclusion query by a
strategy synthesis for an inclusion game. This means G comes with an ownership
partitioning of the non-terminals. It induces a game arena defined by the senten-
tial forms and the left-derivation relation. The winning condition is inclusion in
the regular language given by A.

For the verification of recursive programs, the two major paradigms are sum-
marization and saturation. Procedure summaries compute the effect of a proce-
dure in the form of an input-output relation. Saturation techniques compute the
pre*-image over the configurations of a pushdown system (including the stack).
Both were extensively studied, optimized, and implemented. What speaks for
summaries is that they seem to be used more often, as witnessed by the vast ma-
jority of verification tools participating in the software verification competition.
The reason, besides simpler implementability, may be that the stack present in
pre* increases the search space.

Saturation has been lifted to games and synthesis. We fill in the empty spot
and propose the first summary-based solver and synthesis method for context-
free inclusion games. Our algorithm is based on a novel representation of all
plays starting in a non-terminal. The representation uses the domain of Boolean
formulas over the transition monoid of the target automaton. The elements of
the transition monoid are essentially procedure summaries. We show that our
algorithm has optimal (doubly exponential) time complexity, that it is compatible
with recent antichain optimizations, and that it admits a lazy evaluation strategy.
Our preliminary experiments show encouraging results, indicating a speed up of
three orders of magnitude over a competitor.
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Reducing Nondeterministic Tree Automata by
Adding Transitions

Ricardo Manuel de Oliveira Almeida

University of Edinburgh, United Kingdom

Abstract. We introduce saturation of nondeterministic tree automata,
a technique that adds new transitions to an automaton while preserving
its language. We implemented our algorithm on minotaut - a module
of the tree automata library libvata that reduces the size of automata
by merging states and removing superfluous transitions - and we show
how saturation can make subsequent merge and transition-removal op-
erations more effective. Thus we obtain a Ptime algorithm that reduces
the size of tree automata even more than before. Additionally, we ex-
plore how minotaut alone can play an important role when performing
hard operations like complementation, allowing to both obtain smaller
complement automata and lower computation times. We then show how
saturation can extend this contribution even further. We tested our algo-
rithms on a large collection of automata from applications of libvata in
shape analysis, and on different classes of randomly generated automata.

1 Introduction

Tree automata are a generalization of word automata to non-linear words (i.e.,
trees) [10]. They have many applications in model checking [3,7], term rewrit-
ing [11] and related areas of formal software verification, e.g., shape analysis [13].
Several software packages for manipulating tree automata have been developed,
e.g., Timbuk [4], Autowrite [11] and libvata [16] (on which other verification
tools, like Forester [17], are based).

For nondeterministic automata, many questions about their languages are
computationally hard. The language universality, equivalence and inclusion prob-
lems are PSPACE-complete for word automata and EXPTIME-complete for tree
automata [10]. A common approach to solving many instances of the inclusion
problem is via the computation of different notions of simulation preorders that
at the same time under-approximate language inclusion and are computable in
polynomial time [12,1]. These simulation preorders thus offer a trade-off between
computability and expressiveness. Efficient reduction algorithms have been pre-
sented both for word automata [8] and for tree automata [2,6], where language
inclusion is witnessed by the membership of a pair of states in a simulation pre-
order. In our paper, we focus on Heavy(x,y) [6], a polynomial-time algorithm
for reducing tree automata, in the sense of obtaining a smaller automaton with
the same language, though not necessarily with the absolute minimal number
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of states possible (in general, as with word automata, there is no unique non-
deterministic automaton with the minimal possible number of states for a given
language). Heavy(x,y) is based on an intricate combination of transition pruning
and state quotienting techniques for tree automata, extending previous work on
the words case [8]. Transition pruning is based on the notion that certain tran-
sitions may be removed from the automaton because ’better’ ones remain. The
notion of ’better’ is given by comparing the states at the endpoints of the two
transitions w.r.t. suitable simulation preorders. The Heavy(x,y) algorithm yields
substantially smaller and sparser (i.e., using fewer transitions per state and per
symbol) automata than all previously known reduction techniques, and it is still
fast enough to handle large instances.

We start by optimizing the computation of simulation preorders in Heavy(x,y).
This is done by identifying re-computations that can be skipped, which yields
generally faster computation times. We then introduce the dual notion of tran-
sition pruning, in which transitions are added to the automaton if ’better’ ones
exist already. This technique is known as transition saturation and it was pre-
viously defined for word automata [9]. As in transition pruning, this technique
compares the source states of the two transitions w.r.t. a simulation Rs on the
states space, and the target states of the transitions w.r.t. a simulation Rt. If
saturating an automaton with Rs and Rt preserves the language, we say that
S(Rs, Rt) is good for saturation. We provide a summary of all S(Rs, Rt) we
found to be or not to be good for saturation.

The motivation behind saturation is that it may allow for new merging of
states and transition removal which were not possible by using Heavy alone.
Thus saturating an automaton which has been reduced with Heavy(x,y) and
then reducing it again might result in an even smaller automaton. We perform
an experimental evaluation to measure how much smaller, on average, automata
become by interleaving reduction methods with transition saturation. Our results
indicate that generally one obtains automata with fewer states, but on some cases
with more transitions, than the ones obtained by Heavy(x,y) alone.

In general, one wishes to reduce automata in order to make them more effi-
cient to handle in subsequent computations. Thus, we present a second exper-
imental evaluation showing that the complement automata are much smaller
and faster to compute when the automata have previously been reduced with
the techniques described above.

We implemented our algorithm as an extension of minotaut (source code
available [5]), a module of the tree automata library libvata [16] where the
Heavy algorithm is provided. The experiments described above were performed
on a large collection of automata from applications of libvata in shape analysis,
as well as on different classes of randomly generated tree automata.

2 Preliminaries

Trees and tree automata. A ranked alphabet Σ is a set of symbols together with
a function # : Σ → N0. For σ ∈ Σ, #(σ) is called the rank of a. We define a

R. Almeida
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node as a sequence in N∗. For a node v ∈ N∗, we define the i-th child of v to be
the node vi, for some i ∈ N.

Given a ranked alphabetΣ, a finite tree overΣ is defined as a partial mapping
t : N∗ → Σ such that for all v ∈ N∗ and i ∈ N, if vi ∈ dom(t) then (1)
v ∈ dom(t), and (2) #(t(v)) ≥ i. Note that the number of children of a node v
may be smaller than #(t(v)). In this case we say that the node is open. Nodes
which have exactly #(t(v)) children are called closed. Nodes which do not have
any children are called leaves. A tree is closed if all its nodes are closed, otherwise
it is open. By C(Σ) we denote the set of all closed trees over Σ and by T(Σ)
the set of all trees over Σ.

A finite nondeterministic top-down tree automaton (TDTA) is a quadruple
A = (Σ,Q, δ, I) where Q is a finite set of states, I ⊆ Q is a set of initial states,
Σ is a ranked alphabet, and δ ⊆ Q×Σ×Q+ is the transition relation. A TDTA
has an unique final state, which we represent by ψ. The transition rules satisfy
that if 〈q, σ, ψ〉 ∈ δ then #(σ) = 0, and if 〈q, σ, q1 . . . qn〉 ∈ δ (with n > 0)
then #(σ) = n. Informally, a run of A reads an input tree top-down from the
root, branching into sub-runs on subtrees as specified by the applied transition
rules, and it accepts it if every branch ends in ψ. Formally, a run of A over a
tree t ∈ T(Σ) (or a t-run in A) is a partial mapping π : N∗ → Q such that
v ∈ dom(π) iff either v ∈ dom(t) or v = v′i where v′ ∈ dom(t) and i ≤ #(t(v′)).
Further, for every v ∈ dom(t), there exists either a) a rule 〈q, a, ψ〉 such that
q = π(v) and σ = t(v), or b) a rule 〈q, σ, q1 . . . qn〉 such that q = π(v), σ = t(v),
and qi = π(vi) for each i : 1 ≤ i ≤ #(σ). A leaf of a run π on t is a node
v ∈ dom(π) such that vi ∈ dom(π) for no i ∈ N.

We write t
π

=⇒ q to denote that π is a t-run of A such that π(ε) = q. A

run π is accepting if t
π

=⇒ q ∈ I. The downward language of a state q in A is
defined by DA(q) = {t ∈ C(Σ) | t π

=⇒ q, for some run π}, while the language of
A is defined by L(A) =

⋃
q∈I DA(q). We sometimes write simply A to refer to

its language.

Downward and upward relations. The behaviour of states in TDTA can be com-
pared by semantic preorders (and their induced equivalences), based on the
upward- or downward behaviour of the automaton from these states.

Ordinary downward simulation on tree automata can be characterized by a
game between two players, Spoiler and Duplicator. Given a pair of states (q, r),
Spoiler wants to show that (q, r) is not contained in the simulation preorder
relation, while Duplicator has the opposite goal. Starting in the initial config-
uration (q, r), Spoiler chooses a transition q

σ−→ 〈q1 . . . qn〉, where n = #(σ),
and Duplicator must imitate it stepwise by choosing a transition with the same
symbol r

σ−→ 〈r1 . . . rn〉. This yields n new configurations (q1, r1), . . . , (qn, rn)
from which the game continues independently. If a player ever cannot make a
move then the other player wins. Duplicator wins every infinite game. Simulation
holds iff Duplicator wins.

A tree branches as one goes downward, but ‘joins in’ side branches as one
goes upward. Therefore a comparison of the upward behaviour of states depends
also on the joining side branches as one goes upward in the tree. Thus upward

Reducing Nondeterministic Tree Automata by Adding Transitions
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simulation is only defined relative to a given other relation R that compares the
downward behaviour of states ‘joining in’ from the sides [1]. One speaks, e.g., of
upward simulation of R. Thus in the ordinary upward simulation game, starting
in the initial configuration (q, r), Spoiler chooses a transition q′

σ−→ 〈q1 . . . qn〉,
where q = qi for some i and n = #(σ), and Duplicator must imitate it stepwise

by choosing a transition with the same symbol r′
σ−→ 〈r1 . . . rn〉, where r = ri,

and such that 1) qjRrj , for every j 6= i, and 2) q ∈ I =⇒ r ∈ I. The game
continues from the configuration (q′, r′), and Spoiler wins if Duplicator ever
cannot respond to a move, otherwise Duplicator wins.

While in ordinary downward simulation (resp., upward simulation w.r.t. R)
Duplicator only knows Spoiler’s very next step, in downward k-lookahead simula-
tion (resp., upward k-lookahead simulation w.r.t. R) Duplicator knows Spoiler’s
next k steps in advance (unless Spoiler’s move ends in a deadlocked state - i.e.,
a state with no transitions). In the case where Duplicator knows all steps of
Spoiler in the entire downward simulation game in advance (i.e., k = ∞), we
talk of downward trace/language inclusion (resp., upward trace inclusion w.r.t.
R). As the parameter k increases, the k-lookahead simulation relation becomes
larger and thus approximates the respective trace inclusion relation better and
better.

The downward/upward k-lookahead simulation preorder (denoted�k-dw/�k-up
(R), or just vdw/vup(R) in the ordinary case) is the set of all pairs (p, q) for
which Duplicator has a winning strategy in the respective game. For the down-
ward/upward trace inclusion preorder we write ⊆dw/⊆up(R).

Downward/upward k-lookahead simulation is PTIME-computable for every
fixed k and a good under-approximation of the respective trace inclusion (which
is EXPTIME-complete in the downward case [10], and PSPACE-complete for R
= id in the upward case).

Transition pruning and state quotienting. Given a TDTA A = (Σ,Q, δ, I), cer-
tain transitions may be pruned without changing the language, because ‘bet-
ter’ ones remain. Given a strict partial order P ⊆ δ × δ on the set of tran-
sitions, the pruned automaton is defined as Prune(A,P ) = (Σ,Q, δ′, I) where
δ′ = {(p, σ, r) ∈ δ | @(p′, σ, r′) ∈ δ. (p, σ, r)P (p′, σ, r′)}. I.e., if t P t′ then t may
be pruned because t′ is ‘better’ than t. Prune(A,P ) is unique and transitions are
removed in parallel without re-computing P . Trivially, L(Prune(A,P )) ⊆ L(A).
If L(Prune(A,P )) = L(A) also holds we say that P is good for pruning (GFP).

We obtain GFP relations by comparing the endpoints of transitions over
the same symbol σ ∈ Σ. Given two binary relations Ru and Rd on Q, we de-
fine P (Ru, Rd) = {(〈p, σ, r1 · · · rn〉, 〈p′, σ, r′1 · · · r′n〉) | p Ru p

′ and (r1 · · · rn) R̂d

(r′1 · · · r′n)}, where R̂d is a suitable lifting of Rd ⊆ Q × Q to R̂d ⊆ Qn × Qn:
if Rd is some strict partial order <d, then R̂d is a binary relation <̂d s.t. 1)
∀1≤i≤n. ri ≤d r′i, and 2) ∃1≤i≤n. ri <d r′i; if Rd is a non-strict partial order
≤d, then only condition 1) applies. The relations Ru, Rd are chosen such that
P (Ru, Rd) ⊆ δ × δ is a strict partial order (i.e., of the two relations Ru and Rd,
one must be a strict partial order) that is GFP; see the algorithm Heavy below.

R. Almeida
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Another method for reducing the size of automata is state quotienting. Given
a suitable equivalence on the set of states, each equivalence class is collapsed into
just one state. A preorder v induces an equivalence relation ≡ := v∩w. Given
q ∈ Q, [q] denotes its equivalence class w.r.t. ≡. For P ⊆ Q, [P ] denotes the set
of equivalence classes [P ] = {[p] | p ∈ P}. The quotient automaton is defined as
A/≡ := (Σ, [Q], δA/≡, [I]), where δA/≡ = {〈[q], σ, [q1] . . . [qn]〉 | 〈q, σ, q1 . . . qn〉 ∈
δA}. Trivially, L(A) ⊆ L(A/≡). If L(A) = L(A/≡) also holds, ≡ is said to be
good for quotienting (GFQ).

The Heavy algorithm. Here we describe Heavy(x,y) [6], a tree automata reduc-
tion algorithm based on transition pruning and state quotienting. The param-
eters x, y ≥ 1 describe the lookahead for the used downward/upward looka-
head simulations, respectively, where larger values yield better reduction but
are harder to compute. The algorithm is polynomial for fixed x, y, and doubly
exponential in x (due to the downward branching of the tree) and single expo-
nential in y otherwise. Let Op(x, y) be the following sequence of operations on
tree automata, where RU stands for removing useless states (i.e., states that
cannot be reached from any initial state or from which no tree can be accepted):
RU , quotienting with �x-dw, pruning with P (id ,≺x-dw), RU , quotienting with
�y-up(id), pruning with P (≺y-up(id), id), pruning with P (@up(id),�x-dw), RU ,
quotienting with �y-up(id), pruning with P (�y-up(vdw),@dw), RU . These oper-
ations are language preserving, since the used relations are GFP/GFQ [6].

The algorithm Heavy(1,1) just iterates Op(1, 1) until a fixpoint is reached.
The general algorithm Heavy(x,y) does not iterate Op(x, y), but uses a double
loop: it iterates the sequence Heavy(1,1)Op(x, y) until a fixpoint is reached.

The Heavy algorithm is provided in the minotaut library [5], making use
of libvata’s efficient computation of ordinary simulation (for a description of
minotaut’s implementation of simulation with larger lookaheads see Section 3).
Heavy behaves well in practice, significantly reducing both automata of program
verification provenience and randomly generated automata [6].

3 Efficient Computation of Lookahead Simulations

We performed some optimizations on the computation of the maximal downward
lookahead simulation used in Heavy(x,y). In the following we describe the key
aspects of the computation in terms of a game between Spoiler and Duplicator.
(Upward simulation is similar but simpler, since the tree branches downward.)

Fixpoint iteration with incremental moves. We represent binary relations over Q
as boolean matrices of dimension |Q| × |Q|. Starting with a matrix W in which
all entries are set to TRUE, the algorithm consists of a downward refinement loop
of W that converges to the maximal downward k-lookahead simulation. In each
iteration of the refinement loop, for each pair p, q where W [p][q] is still TRUE:

– Spoiler tries an attack atk consisting of a possible move from p of some depth
d ≤ k. Each such attack is built incrementally, for d = 1, 2, . . . , k, in order to
give Duplicator a chance to respond already to a prefix of atk of depth < k.
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– Duplicator then attempts to defend against the given attack of depth d, by
finding a matching move def from q by the same symbols s.t. every leaf-state
in def is in relation W with the corresponding state in atk . (Duplicator’s
search is done in depth-first mode.) If successful, Duplicator declares victory
against this particular (prefix of an) attack and Spoiler tries a new one, since
extending the current one to a higher depth is pointless. If unsuccessful and
d < k, Spoiler builds an attack of the next depth level d+1, by extending atk
with one new transition from each of its leaf-states. The extra information
might enable Duplicator to find a successful defence then.

– Duplicator fails if he could not defend against an attack atk of the maximal
depth, either where atk has depth d = k or d < k but atk cannot be extended
any more due to all its leaf-states having no outgoing transitions.

– If Duplicator could defend against every attack (or some prefix of it) by
Spoiler then W [p][q] stays true, for now.

– In the worst case, for each Spoiler’s attack of depth d, Duplicator must search
through all defences of depth up-to d, but often Duplicator wins sooner.

– Similarly, in the worst case, Spoiler needs to try all possible attacks of depth
k, but often Duplicator already wins against prefixes of some depth d < k.

Since the outcome of a local game depends on the values of W , the refinement
loop might converge only after several iterations. The reached fixpoint represents
a relation that is generally not transitive (for k > 1), but its transitive closure
is the required maximal downward k-lookahead simulation preorder �k-dw.

An Optimization Based on Pre-Refinement. Following an approach implemented
in Rabit [15] for word automata, we under-approximate non-simulation as fol-
lows. If there exists a tree of bounded depth d that can be read from state p but
not from state q, then the pair (p, q) cannot be in k-lookahead simulation for any
k. The pre-refinement step iterates through all pairs (p, q) and sets W [p][q] to
false if such a tree is found witnessing non-simulation. Our experiments show
that, for most automata samples, running a pre-refinement with some modest
depth d suffices to speed up the k-lookahead downward simulation computation.

We now present an optimization that allows to compute lookahead simulation
faster. The idea is that attacks which are good (i.e., successful) or bad (i.e.,
unsuccessful) may be remembered to skip unnecessary re-computations.

Semi-global caching of Spoiler’s attacks. An attack is seen as good or bad within
the scope of the whole game. Consider the game configuration (p1, q1) in Fig-
ure 1. Although q1 can read all trees of depth 3 that p1 can read, there are good
attacks from p2 both against q2 and against q3. Duplicator will find and store
these if, when defending against the attack ac(e, e), he first tries the transition to
q2 (which can only read d), or when defending against ad(e, e) he first tries the
transition to q3 (which can only read c). After trying possibly all attempts, Du-
plicator is able to defend against the attack and Spoiler now tries the b-transition
from p1 to p2. However, all possible sub-attacks are now the same, which makes
Duplicator announce defeat on them immediately without any exploration.

R. Almeida
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In Appendix B two different ways of performing this caching of Spoiler’s at-
tacks can be found. The three versions present a trade-off between expressiveness
and space required to encode attacks. Our tests indicate that the semi-global ver-
sion indeed speeds up the computation on automata with high transition overlaps
(i.e., where many states are shared by different transitions).

p1 p2

p9 p10

p8

p3

p4

p6

a

a,b

c

c

d
a

e

e

e
p7 . . .

p5 . . .

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

d

d

c
c

c

a,b

a,b

e

f

e

f

e

e

. . .

. . .

. . .q12

Fig. 1: For W = {(p5, q7), (p5, q8), (p7, q8), (p7, q12)}, all versions of the optimiza-
tion allow some attacks to be skipped when computing the 3-lookahead down-
ward simulation.

4 Saturation of Tree Automata

In Section 2, we described the transition pruning technique, which removes a
transition if a ’better’ one remains. In this section, we introduce its dual notion,
saturation, which adds a transition if a ’better’ one exists already. The motivation
behind saturation is to pave the way for further reductions when the Heavy
algorithm has reached a fixpoint on the automaton (see Section 5). Saturation
has been defined for the words case before [9], here we apply it to tree automata.

Definition 1. Let A = (Σ,Q, δ, I) be a TDTA, ∆ = Q × Σ × Q+ and S ⊆
∆ ×∆ a reflexive binary relation on ∆. The S-saturated automaton is defined
as Sat(A,S) := (Σ,Q, δS , I), where

δS = {〈p′, a, q′1 . . . q′#(a)〉∈∆ | ∃〈p, a, q1 . . . q#(a)〉∈δ · 〈p′, a, q′1 . . . q′#(a)〉S 〈p, a, q1 . . . q#(a)〉}.

Since S is reflexive, any transition in the initial automaton is preserved and
so A ⊆ Sat(A,S). When the converse inclusion also holds, we say that S is good
for saturation (GFS). Note that the GFS property is downward closed in the
space of reflexive relations, i.e., if R is GFS and id⊆R′⊆R, then R′ too is GFS.
(or if R′ is not GFS, then R too is not GFS).

Given two binary relations Rs and Rt on Q, we define
S(Rs, Rt) = {(〈p, σ, r1 · · · rn〉, 〈p′, σ, r′1 · · · r′n〉) | pRsp

′ and (r1 · · · rn)R̂t(r
′
1 · · · r′n)},
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where R̂t is the standard lifting of Rt ⊆ Q×Q to R̂t ⊆ Qn×Qn. Informally,
a transition t′ is added to the automaton if there exists already a transition
t s.t. its source state is Rs-larger than the source state of t′, and its target
states are R̂t-larger than the target states of t′. Theorem 1 below proves that
S(⊇dw,⊆dw) is GFS. Since the GFS property is downward closed, it follows that
S(⊇dw,vdw), S(⊇dw, id), S(wdw,⊆dw), S(wdw,wdw), S(wdw, id), S(id ,⊆dw) and
S(id ,vdw) too are GFS. In Theorem 2 (see Appendix A for a proof), we prove
that S(⊆up(id),⊇up(id)) is GFS. Thus it follows that S(⊆up(id),wup(id)), S(⊆up

(id), id), S(vup(id),⊇up(id)), S(vup(id),wup(id)), S(vup(id), id), S(id ,⊇up(id))
and S(id ,wup(id)) too are GFS.

Theorem 1. S(⊇dw,⊆dw) is GFS.

Proof. Let A be a TDTA and AS = Sat(A,S(⊇dw,⊆dw)). We will use induction
on n ≥ 1 to show that for every tree t of height n and every run πS of AS s.t.
t
πS=⇒ p, for some state p, there exists a run π of A s.t. t

π
=⇒ p. This shows, in

particular, that AS ⊆ A.
In the base case n = 1, t is a leaf-node σ, for some σ ∈ Σ. Thus for every run

πS of AS such that t
πS=⇒ p, for some state p, there exists 〈p, σ, ψ〉 ∈ δS . By the

definition of δS , there exists 〈q, σ, ψ〉 ∈ δ s.t. q ⊆dw p. Consequently, there exists

a run π in A s.t. t
π

=⇒ q. By q ⊆dw p, there also exists a run π′ of A s.t. t
π′

=⇒ p.
For the induction step, let t be a tree of height n > 1 and a its root sym-

bol. Thus for every run πS of AS s.t. t
πS=⇒ p, for some state p, there exist

〈p, a, q1 . . . q#(a)〉 ∈ δS and, for each i : (1 ≤ i ≤ #(a)), a run πSi
of AS s.t.

ti
πSi=⇒ qi. By the definition of δS , there exists 〈p′, a, q′1 . . . q′#(a)〉 ∈ δ s.t. p′ ⊆dw p

and, for every i : (1 ≤ i ≤ #(a)), q′i ⊇dw qi. Applying the induction hypothe-
sis to each of the subtrees ti, we know that for every ti-run πSi of AS ending
in qi there is also a ti-run πi of A ending in qi. And since q′i ⊇dw qi for every

i : (1 ≤ i ≤ #(a)), for each ti there exists a run π′i of A s.t. ti
π′
i=⇒ q′i. Since there

exists 〈p′, a, q′1 . . . q′#(a)〉 ∈ δ, we obtain that there is a run π′′ of A s.t. t
π′′

=⇒ p′.

From p′ ⊆dw p, it follows that there is also a run π′′′ of A s.t. t
π′′′
=⇒ p.

Theorem 2. S(⊆up(id),⊇up(id)) is GFS.

The counterexample in Fig. 2 shows that S(≡dw,≡up(R)) is not GFS for any
relation R⊆Q×Q. The remaining counterexamples can be found in Appendix A:

– Figure 8 shows that S(id ,≡up(≡dw)) is not GFS.
– Figure 9 shows that S(≡up(≡dw), id) is not GFS.
– Figure 10 is inspired by an example for a similar result for linear trees (i.e.,

words) [9]. It shows that S(≡up(R),≡dw) is not GFS for any relation R ⊆
Q×Q.

In Figure 3 we present a table that summarizes these results. The negative
results follow from the counterexamples given and the fact that the GFS property
is downward closed.
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≡u
p(R)

≡ dw

a

a

b
b

ψ
ψ

b

b

a

b

a

Fig. 2: S(≡dw,≡up(R)) is not GFS for any relation R ⊆ Q×Q: if we add the
dotted transition, the linear tree aaab is now accepted. The symbol b has rank 0
and a rank 1.

S id vdw ⊆dw wup(id) ⊇up(id) wup(wdw) ⊇up(⊇dw)

id X X X X X × ×
wdw X X X × × × ×
⊇dw X X X × × × ×
vup(id) X × × X X × ×
⊆up(id) X × × X X × ×
vup(vdw) × × × × × × ×
⊆up(⊆dw) × × × × × × ×

Fig. 3: GFS relations for tree automata. Relations which are GFS are marked
with X and those which are not are marked with ×.
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5 Experimental Results

As we saw in Section 2, the automaton computed by Heavy corresponds to the
local minimum of the sequence of reduction techniques used, i.e., no smaller
automaton can be reached by applying that same sequence of steps again. The
motivation behind saturation is to change this scenario, since modifying an au-
tomaton while preserving its language may leave it in a state where a different
local minimum is reachable by applying Heavy again. Since saturation adds tran-
sitions, in the end an automaton will either have 1) the same number of states
and the same or larger number of transitions, 2) the same number of states but
fewer transitions, or 3) fewer states. We say that scenarios 2) and 3) correspond
to an automaton ’better’ than the initial one, and scenario 1) to a ’worse’ one.

Our experiments on test automata consisted of first reducing them with
Heavy and then alternating between saturation and reduction successively until
either a fixpoint is reached or the automata becomes ’worse’. Just like in the
case of Heavy, there is no ideal order to apply the saturation/reduction tech-
niques, so we tested multiple possibilities, from which we highlight two versions,
Sat1(x,y) and Sat2(x,y), where x, y ≥ 1 are the lookaheads used for computing
k-downward and k-upward simulations, respectively (see Figure 4). In both Sat1
and Sat2, we chose an order for the operations that ensures that the effect of
the saturations is not necessarily cancelled by the reductions immediately after.
Intuitively, Sat1 starts by applying both saturations together, in an attempt to
obtain a highly dense automaton where more states may be quotiented. Sat2,
on the other hand, prevents the automaton from becoming too dense, by in-
terleaving each downward saturation with the upward reductions it may allow.
Moreover, each upward reduction not only may allow for new downward satu-
rations to be performed, but it may also have its effect cancelled if the upward
saturation is performed immediately after. Thus, in Sat2 downward saturation
and upward reductions are iterated in an inner loop before performing any up-
ward saturation. Both versions return the ’best’ automaton ever encountered.

Sat1(x,y)
Loop:

Sat. w/ S(�x-dw,�x-dw)
Sat. w/ S(�y-up(id),�y-up(id))
Quot. w/ �y-up(id)

Prune w/ P (@up(id),�x-dw)
Quot. w/ �y-up(id)

Prune w/ P (�y-up(vdw),@dw)
Run Heavy(x,y)

Sat2(x,y)
Loop:

Loop:

Sat. w/ S(�x-dw,�x-dw)
Quot. w/ �y-up(id)
Prune w/ P (≺y-up(id), id)

Prune w/ P (@up(id),�x-dw)
Quot. w/ �y-up(id)

Prune w/ P (�y-up(vdw),@dw)
Sat. w/ S(�y-up(id),�y-up(id))
Run Heavy(x,y)

Fig. 4: Two saturation-based reduction methods. Both versions return the ’best’
automaton ever encountered.

R. Almeida

12



We tested the different saturation-based reduction methods on a set of 14,498
automata (57 states and 266 transitions on avg.) from the shape analysis tool
Forester [17]. We can see (Figure 5) that, on average, the two versions produced
automata containing both fewer states and, especially, fewer transitions than
Heavy alone. However, this came at the expense of longer running times.

H(1,1)  H(1,1) +
S1(1,1)

 H(1,1) +
S2(1,1)
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Fig. 5: Reduction of Forester automata using saturation methods. The left chart
gives the avg. number of states and transitions that remained (in percentage)
after application of each method; the right chart compares their running times.
Heavy(1,1) followed by Sat2(1,1) reduced the automata the most, but it was also
the slowest method.

The results that follow focus on the advantage of reducing automata when
computing their complement (for which we use libvata’s implementation of
the difference algorithm [14]). We started by testing on a subset of the Forester
sample (Fig. 6 and Fig. 11 in App. C), and we compared direct complementation
with reducing automata (with Heavy(1,1) optionally followed by Sat2(1,1)) prior
to the complementation and with a final reduction using Heavy(1,1). Due to
memory reasons, direct complementation was not feasible for large automata.
Thus the sample used is the subset of Forester containing all automata with at
most 14 states, in a total of 760 automata. As we can see, all reduction methods
yielded significantly smaller complement automata than direct complementation,
on average, while running either with similar times or substantially faster. This
difference was particularly notorious when the automata were first reduced with
both Heavy(1,1) and Sat2(1,1), which, compared to direct complementation,
resulted in automata with fewer states (18 vs 27, see Figure 11 in App. C)
and fewer transitions (649 vs 1750) and at much lower times (0.02s vs 4.86s).
Applying Heavy(1,1) in the end reduced the automata even more, with a very
low time cost.

The next experiments were performed on sets of randomly generated tree
automata, according to a generalization of the Tabakov-Vardi model of random
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Fig. 6: Reducing and complementing Forester automata with at most 14 states.
The complement automata have fewer transitions and are faster to compute
if the complementation is preceded by applying Heavy(1,1) and Sat2(1,1) -
H(1,1)+S2(1,1)+C - or just Heavy(1,1) - H(1,1)+C. Applying Heavy(1,1) in
the end reduces even more. We include the initial number of transitions (I) for
comparison purposes.
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word automata [18]. Given parameters n, s, td (transition density) and ad (ac-
ceptance density), it generates tree automata with n states, s symbols (each of
rank 2), n ∗ td randomly assigned transitions for each symbol, and n ∗ ad ran-
domly assigned leaf rules. Figure 7 shows the results of complementing automata
with n = 4 and varying td . While the automata tested are very small, for some
values of td their complements are quite complex (more than 400 transitions
on average). As we can see, applying Heavy not only before but also after the
complementation on average yielded significantly smaller automata, especially in
terms of transitions, while running with similar times to direct complementation
(all average times were below 0.1s). Moreover, the saturation method achieved
reductions in the states space which were not possible with Heavy alone. This
came at the cost of higher running times and also of returning automata with
more transitions - but with still far less transitions then those obtained with
direct complementation. Note that for very dense automata (td ≥ 4.0), the av-
erage size of the complement became particularly small. This is because more
than half of the automata generated with such td were universal, and thus their
complements were empty.
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Fig. 7: Reducing and complementing Tabakov-Vardi random tree automata
with 4 states. Each data point is the average of 300 automata. In gen-
eral, applying Heavy(1,1) before the complementation (H(1,1)+C) yielded au-
tomata with fewer states, on avg., than direct complementation (C). When
Heavy(1,1) is also used after the complementation, the difference is even more
significant - H(1,1)+C+H(1,1) - and even more when Sat2(1,1) is used -
H(1,1)+C+H(1,1)+S2(1,1).

We also tested our algorithms on random automata with 7 states (Figure 13
in App. C), whose complement automata can have, on avg., up to 100 states
and more than 30,000 transitions. As above, reducing automata with Heavy both
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before and after the complementation returned automata with significantly fewer
transitions than direct complementation (3,000 vs 35,000 in some cases), but the
former was clearly slower (avg. times up to 90s) than the latter (avg. times up to
2.5s) on the automata region where the difference between the two methods was
most drastic. Still, for highly dense automata (td ≥ 4), direct complementation
was responsible for the highest times recorded (avg. times between 135s and
2170s). Due to the size of the complement automata, the saturation methods
revealed to be too slow to be viable in this case.

All experiments were run on an Intel Core i5 @ 3.20GHz x 4 machine with
8GB of RAM using a 64-bit version of Ubuntu 16.04.
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(2008): Computing Simulations over Tree Automata. In: TACAS, LNCS 4963, pp.
93–108. Available at http://dx.doi.org/10.1007/978-3-540-78800-3_8.
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16. Ondrej Lengál, Jiŕı Simácek & Tomás Vojnar (2015): Libvata: highly optimised non-
deterministic finite tree automata library. http://www.fit.vutbr.cz/research/

groups/verifit/tools/libvata/.
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A Proofs and Counterexamples

For Lemma 1 and Theorem 2 below we make use of the following auxiliary
definitions. For every tree t ∈ T(Σ) and every t-run π, let level i(π) be the
tuple of states that π visits at depth i in the tree, read from left to right.
Formally, let (v1, . . . , vn), with each vj ∈ Ni, be the set of all tree positions
of depth i s.t. each vj ∈ dom(π), in lexicographically increasing order. Then
level i(π) = (π(v1), . . . , π(vn)) ∈ Qn. We say that st ∈ Q∗ is a subtuple of
level i(π), and write st ≤ level i(π), if all states in st also appear in level i(π) and
in the same order. By lifting preorders on Q to preorders on Qn, we can compare
tuples of states w.r.t. ⊆up(id).

Lemma 1. Let A be a TDTA and (p1, . . . , pn) and (q1, . . . , qn) two tuples of
states of A such that (p1, . . . , pn) ⊆up(id)(q1, . . . , qn). Then, for every t ∈ T(Σ),
every accepting t-run π and every tuple (v1, . . . , vn) of some leaves of π of the
same depth i (i.e., (v1, . . . , vn) ≤ level i(π)) s.t. (π(v1), . . . , π(vn)) = (p1, . . . , pn),
there exists an accepting t-run π′ of A such that (π′(v1), . . . , π′(vn)) = (q1, . . . , qn)
and π′(v) = π(v) for every leaf v of π′ other than v1, . . . , vn.

Proof. Let π be an accepting t-run of A s.t. (π(v1), . . . , π(vn)) = (p1, . . . , pn).
We say that an accepting t-run π′′ is i-good iff i) for every node vj of π′′, with
j ≤ i, π′′(vj) = qj , and ii) for every vj , with i < j ≤ n, π′′(vj) = pj . We will
show, by induction on i, that for every i there exists an accepting t-run π′′′ which
is i-good and s.t. π′′′(v) = π(v) for every leaf v of π′′′ other than v1, . . . , vn. For
the particular case of i = n this proves the lemma.

The base case i = 0 is trivial, since the accepting t-run π is 0-good itself.
For the induction step, let π1 be an accepting (i−1)-good t-run of A. If i > n,

the lemma holds trivially. Otherwise, we have π1(vi) = pi ⊆up (id) qi and thus
there exists an accepting t-run π2 of A s.t. π2(vi) = qi. And since the upward
trace inclusion is parameterized by id , it follows, in particular, that for every
leaf v other than vi, π2(v) = π1(v). Thus, π2 is an accepting i-good t-run of A.
Moreover, we have that, on leaves other than v1, . . . , vn, the run π2 coincides
with π1 and consequently, by the induction hypothesis, with π.

Theorem 2 S(⊆up(id),⊇up(id)) is GFS.

Proof. Let A be a TDTA and AS = Sat(A,S(⊆up (id),⊇up (id))). If t̂ ∈ AS ,
then there exists an accepting t̂-run π̂ of AS . We will show that there exists an
accepting t̂-run of A, which proves AS ⊆ A.

Let us first define an auxiliary notion. For every t ∈ T(Σ) and every t-run
π, we say that π is i-good iff it does not contain any transition of δS − δ from
any position v ∈ N∗ s.t. |v| < i, i.e., all transitions used in the first i levels of
the tree are of A.

Next, we will show, by induction on i, that for every i there exists an accepting
i-good t̂-run π̂′ of AS s.t. level i(π̂

′) = level i(π̂). For i equal to the height of t̂,
this implies that there exists an accepting t̂-run of A.

The base case i = 0 is trivial, since π̂ is 0-good itself.

R. Almeida
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For the induction step, let us first define some auxiliary notions. For every
t ∈ T(Σ) and every t-run π, we say that level i′(π) is j-good iff π does not contain
a transition of δS − δ from a state π(vk), s.t. k ≤ j and π(vk) is the k-th state
of level i′(π). We now say that an accepting t̂-run π̂′′ of AS is (i − 1, j)-good iff
i) it is (i− 1)-good, ii) level i−1(π̂′′) is j-good, and iii) level i(π̂

′′) = level i(π̂).
We will now show, by induction on j, that for every j there exists an accepting

(i − 1, j)-good t̂-run of AS . Since trees are finitely-branching, we have that for
a sufficiently large j there is an accepting t̂-run π̂′′′ of AS which is i-good. And
since, in particular, level i(π̂

′′′) = level i(π̂), this will conclude the outer induction.
For the base case (i−1, 0), we know by the hypothesis of the outer induction

that there exists an accepting (i−1)-good t̂-run π1 s.t. level i−1(π1) = level i−1(π̂).
Then the t̂-run π2 which, on the levels below i, coincides with π1 and, on the
levels from i up, coincides with π̂ too is accepting and (i− 1)-good. Thus π2 is
(i− 1, 0)-good.

For the induction step, let π1 be an accepting (i − 1, j − 1)-good t̂-run of
AS , and let π′1 be the prefix of π1 which only uses transitions of A. π′1 is thus
an accepting run of A over some prefix tree t̂′ of t̂. Let vj be the node of t̂ s.t.
π′1(vj) is the j-th state of level i−1(π′1) and σ = t̂(vj) a symbol of rank r.

If r = 0, then vj is a leaf of t̂ and so there exists a transition 〈π′1(vj), σ, ψ〉 in
AS . By the definition of δS , there exists a transition 〈p, σ, ψ〉 in A s.t. π′1(vj) ⊆up

(id) p. Thus there exists an accepting t̂′-run π2 of A s.t. π2(vj) = p and for any
leaf v of π2 other than vj , π2(v) = π′1(v). We now obtain a run over t̂ again
by extending π2 downwards according to π1, i.e., π2(vv′) := π1(vv′), for every
leaf v of π2 other than vj and for every v′ ∈ N∗. It follows that level i(π2) =
level i(π1) = level i(π̂). π2 is clearly a (i − 1)-good t̂-run of AS and level i−1(π2)
is j-good. Thus π2 is an accepting (i− 1, j)-good t̂-run of AS .

If r > 0, then vj is not a leaf and so there exists a transition 〈π′1(vj), σ, π1(vj1)
. . . π1(vjr)〉 in AS . By the definition of δS , there exists a transition trans:
〈p, σ, q1 . . . qr〉 in A s.t. π′1(vj) ⊆up(id)p and
1) (q1 . . . qr) ⊆up (id)(π1(vj1) . . . π1(vjr)). From π′1(vj) ⊆up (id) p we have that
there exists an accepting t̂′-run π2 of A s.t. π2(vj) = p and π2(v) = π′1(v), for
every leaf v of π2 other than vj . Extending π2 with trans we obtain an accepting
run of A s.t. π2(vjk) := qk for each child vjk of vj . Applying Lemma 1 to 1), we
obtain that there exists an accepting run π3 of A over the same prefix tree of t̂ as
π2 s.t. 2) π3(vjk) = π1(vjk) for each child vjk of vj , and π3(v) = π2(v) = π1(v)
for every leaf v of π3 other than vj1, . . . , vjr. We now obtain a run over t̂ again
by extending π3 downwards according to π1, i.e., 3) π3(vv′) := π1(vv′), for ev-
ery leaf v of π3 other than vj1, · · · , vjr and for every v′ ∈ N∗. π3 is clearly a
(i − 1)-good t̂-run of AS and level i−1(π3) is j-good. From 2) and 3), we obtain
that level i(π3) = level i(π1) = level i(π̂). Thus π3 is an accepting (i − 1, j)-good
t̂-run of AS .
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≡dw ≡up(≡dw) ≡up(≡dw) ≡dw

≡up(≡dw) ≡up(≡dw)

≡dw ≡up(≡dw) ≡up(≡dw) ≡dw

a a a

b b b b b b b b

c c

ψ

Fig. 8: S(id ,≡up(≡dw)) is not GFS: if we add the dotted transitions, the tree
a(b(c), b(c)) is now accepted. The symbols c, b and a have ranks 0, 1 and 2, resp.

≡up(≡dw)

≡up(≡dw) ≡up(≡dw)

a a a

b b b b

ψ ψ

≡dw ≡dw ≡up(≡dw)

Fig. 9: S(≡up (≡dw), id) is not GFS: if we add the dotted transitions, the tree
a(b, b) is now accepted. The symbols b and a have ranks 0 and 1, respectively.
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≡up(R)

c

ψ

a

c

a

c

ψ

≡
dw

Fig. 10: S(≡up(R),≡dw) is not GFS for any relation R ⊆ Q×Q (example adapted
from [9]): if we add the dotted transition, the linear tree aac is now accepted.
The symbol c has rank 0 and a has rank 1.

B Variants of the Optimization to the Lookahead
Simulation Game

In Section 3 we presented an optimization to the computation of the k-lookahead
downward simulation based on the caching of attacks in the simulation game
between Spoiler and Duplicator. In this appendix we present two alternative
versions to this optimization, where we change the scope of the attacks cached.

Local caching of Spoiler’s attacks. Whenever Spoiler uses a transition t in an
attack, Duplicator can memorize which states in the automaton are able to
defend against the target states of t. In Fig. 1 from Section 3, in a round of the
simulation game from (p2, q2), Spoiler is attempting the attack d(e, e) leading to
p5, p7. Duplicator tries responding with a d-transition to (q4, q5), and since there
is a e-transition from q4 to q7 and p5W q7, Duplicator caches the information
that, against q4, the first sub-attack is a bad one. However, q5 can only read f
and so Duplicator will have to try a different defence. Duplicator now tries the
d-transition leading to q4 and q6 instead. Thanks to the information recorded,
Duplicator now only needs to find a defence from q6 against p6, which exists
since q6 goes to q8 by e and p5W q8, and so Duplicator declares victory against
this particular attack.

Conversely, if the game configuration was (p2, q3), after trying to defend
against the attack c(e, e) using the c-transition to q9 and q10, Duplicator could
reuse the information that the sub-attack e is good against q9 when trying the
c-transition to q9 and q11.

Global caching of Spoiler’s attacks. Here we expand the scope to the entire
W -refinement. E.g., the good attacks from p2 against q2 or against q3 can be
recalled even when a game from a different configuration, say, (p8, q1) is played.
However, the information about the bad attack from, say, p3 against q4 cannot
be used outside of the local game in which it was saved, since Duplicator could
only defend against it based on the state of W at the time. Note the asymmetry
between good and bad attacks: good attacks remain good for the rest of the entire
computation, but bad attacks may become good after W changes.
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C More Charts from the Experimental Results

I C H(1,1)+
C
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Fig. 11: Reducing and complementing Forester automata with at most 14 states.
The complement automata have fewer states if the complementation is preceded
by applying Heavy(1,1) and Sat2(1,1) - H(1,1)+S2(1,1)+C - or just Heavy(1,1)
- H(1,1)+C. Applying Heavy(1,1) in the end reduces even more. We include the
initial number of states (I) for comparison purposes.
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Fig. 12: Reducing and complementing Tabakov-Vardi random tree automata
with 4 states. Each data point is the average of 300 automata. In general, ap-
plying Heavy(1,1) before the complementation (H(1,1)+C) yielded automata
with fewer states and transitions, on average, than direct complementation (C).
When Heavy is used both before and after the complementation, the difference
is even more significant: H(1,1)+C+H(1,1) produced automata with less than
1/3 of the transitions of C for nearly all values of td. Running Heavy followed by
Sat2 after the complementation (H(1,1)+C+H(1,1)+S2(1,1)) offered a trade-off
between reduction in the states space and in the number of transitions (as well
as in time).
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Fig. 13: Reducing and complementing Tabakov-Vardi random tree automata
with 7 states. Each data point is the average of 300 automata. In general, apply-
ing Heavy(1,1) before the complementation (H(1,1)+C) yields smaller automata
than direct complementation (C), on average. When Heavy is used both before
and after the complementation (H(1,1)+C+H(1,1)), the difference is even more
significant: the automata produced by H(1,1)+C+H(1,1) had between 4 and
24 times less transitions than those yielded by C, but the greater reductions
took longer to compute. C still took the longest times recorded, for highly dense
automata.
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Characterizing DAG-depth of directed graphs
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Abstract. We study DAG-depth, a structural depth measure of directed
graphs, which naturally extends the tree-depth of ordinary graphs. We
define a DAG-depth decomposition as a strategy for the cop player in
the lift-free version of the cops-and-robber game on directed graphs and
prove its correctness. The DAG-depth decomposition is related to DAG-
depth in a similar way as an elimination tree is related to the tree-depth.
We study the size aspect of DAG-depth decomposition and provide a
definition of mergeable and optimally mergeable vertices in order to make
the decomposition smaller and acceptable for the cop player as a strategy.
We also provide a way to find the closure of a DAG-depth decomposition,
which is the largest digraph for which the given decomposition represents
a winning strategy for the cop player.

1 Introduction

Structural width parameters are numeric parameters associated with graphs.
They represent different properties of graphs. Examples of such parameters are
path-width [11], tree-width [12] and clique-width [3]. The first two were defined
by Robertson and Seymour in 1980s, clique-width was defined by Courcelle et al.
in 1991. Informally, path-width measures how close a graph is to a path and the
other two similarly relate to trees.

As a directed analog of tree-width, directed tree-width [7] was defined by
Johnson et al. in 1998. This line of research continued in Obdržálek’s definition
of DAG-width [10] in 2006. Another digraph measure Kelly-width [6] was defined
by Hunter and Kreutzer in 2007. In 2010 Ganian et al. analyzed [5] digraph
width measures and reasons why the search for the ”perfect” directed analog of
tree-width has not been successful so far.

All these parameters are tightly correlated with different versions of a cops-
and-robber game with an infinitely fast robber. The essence of this game is to
catch the robber by placing the cops in the vertices and moving them.

Structural depth parameters are analogously correlated with the so-called
lift-free version of the game, defined in Section 2.2. An example of such a pa-
rameter is tree-depth [9], defined by Nešetřil and Ossona de Mendez in 2005. In

? Research supported by the Center of Excellence – Institute for Theoretical Computer
Science; Czech Science Foundation Project no. P202/12/G061.
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2012 Adler et al. defined [1] a hypergraph analog of tree-depth. In that work
Adler et al. also studied generalizations of the elimination tree for hypergraphs.

A directed analog of tree-depth was defined under the name DAG-depth [4]
by Ganian et al. in 2009. Its definition, however, did not provide any structural
insight into the parameter since there was no naturally associated decomposition
with it.

We define a DAG-depth decomposition of a digraph and show that it can
be used as a winning strategy for the cop player in the lift-free version of the
cops-and-robber game in directed graph. The main issue is that an optimal
decomposition usually has to contain multiple copies of original vertices.

2 Preliminaries

We deal with directed graphs.
An outdegree d+D(v) of the vertex v ∈ V (D) is the number of edges going from

v. An indegree d−D(v) of the vertex v ∈ V (D) is the number of edges coming to
v. An out-neighborhood, denoted by N+

D (v), is the set of vertices x such that the
edge (v, x) exists in D.

An acyclic directed graph is shortly called a DAG. In DAG, vertex u is a
parent of v if the digraph contains an edge (u, v). Vertex v is then a child of u.
The vertex u is an ancestor of v if the digraph contains a path from u to v. If u
is an ancestor of v, then v is a descendant of u.

One of the ways to extend connectivity to directed graphs is the concept
of reachable fragments. Reachable fragments are maximal, by inclusion, sets of
vertices such that every fragment R contains a vertex called the source, from
which there is a path to every vertex of R.

2.1 Original cops-and-robber game

The cops-and-robber game was first introduced [8] in 1982 by LaPaugh. The
variant we are interested in was introduced [13] in 1989 by Seymour and Thomas.
The main difference between them is that in the version by Seymour and Thomas
the robber is infinitely fast, while in LaPaugh’s version he is not.

The game by Seymour and Thomas is played by one player on a finite undi-
rected graph G. The player controls k cops. At any time each of them either stays
on some vertex or is temporarily removed from the graph. The player moves the
cops, he can remove them from the graph and place them back into any vertex
he wants.

The robber always stands on some vertex of G. During the game, he can
move at any time along the edges at infinite speed. He is not allowed to run
through a cop but he can see when the cop is being placed on some vertex and
he can run through that vertex before the cop lands.

The cop player wins when the cops catch a robber, i.e. when the robber is in
some vertex v such that there is a cop placed in each vertex of N+(v) and also
on v. The player loses if the robber is able to avoid getting caught.
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The robber is always aware of cops’ position and the player is aware of
robber’s position. The minimal number of cops needed to catch a robber on
a graph is called the cop number of the graph.

2.2 Lift-free version of the game

In the lift-free version of the cops-and-robber game there is an additional rule;
once the cop is placed to some vertex, he stays there until the end of the game.
In each turn the cop player puts a cop onto some vertex of the graph. The game
ends when the robber is caught or the cop player runs out of cops. If the robber
is caught, the cop player wins, otherwise he loses.

2.3 Extension to directed graphs

The concept of the cops-and-robber game can be naturally extended to directed
graphs. The robber can only move along the edges in the right direction.

The aforementioned DAG-depth [4], introduced by Ganian et al. in 2009, is
given as follows.

Definition 1 (DAG-depth). Let D be a digraph and R1, . . . , Rp the reachable
fragments of D. The DAG-depth ddp(D) is inductively defined:

ddp(D) =





1 if |V (D)| = 1

1 + minv∈V (D)(ddp(D − v)) if p = 1 and |V (D)| > 1

max1≤i≤p ddp(Ri) otherwise

DAG-depth is directly related to the lift-free game as follows (where a proof
is quite obvious):

Theorem 1. Let D be a digraph. There exists a lift-free winning strategy for k
cops, if and only if DAG-depth of D is less or equal to k.

3 DAG-depth decomposition

The aim of this section is to define a DAG-depth decomposition (Definition 2)
from the recursive definition of DAG-depth (Definition 1) the same way as an
elimination tree is obtained from the definition of tree-depth. The decomposition
aims to represent a game plan for the cop player.

The main difference between the tree-depth and DAG-depth cases is that
in undirected graphs two connected components cannot have any vertices in
common, while distinct maximal reachable fragments in directed graphs can have
some vertices in common. This naturally brings complications and ambiguity.

There could be two ways to resolve this. Either just ignore it and let the
decomposition have more copies of one vertex. But that would mean the decom-
position could grow exponentially large (see Section 4, and exponentially large
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decompositions would be practically useless for the player as a game plan and
for algorithmic purposes.

A

B

C D

E

F

A B

C

D C

D

E F

Fig. 1. A simple digraph and its decomposition, showing that DAG-depth decompo-
sition cannot always be done optimally without repetition of vertices (see repeated
C,D)

The other extreme solution would be to merge all the copies of one vertex.
This cannot always be done, as the graph in Figure 1 shows.

In this graph, the robber can be caught by using two cops. The idea is that
if the robber starts on the vertices A or B, the player places the first cop on the
vertex C. Then the robber has either stayed on the vertex he was on, or ran to
D. Placing the cop on the robber will catch him, since there is no edge between
A and D or B and D. Symmetrically, if the robber starts on E or F , the first
cop is placed to D and second catches the robber. If the robber starts on C or
D, he can not go into any other vertex and covering these two vertices in any
order will result into a win.

In the corresponding ”decomposition” (Figure 1 bottom), the two copies of
the vertex C can not be merged since their merging would create a path of length
2 and therefore the decomposition would not be optimal anymore. For the same
reason the copies of D can not be merged, too.

Balancing these two extreme approaches would give us decompositions with
some of the repeated vertices merged. Now the core question is, which vertices
can be merged and why.
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3.1 Basic properties of a DAG-depth decomposition

As argued above, in a decomposition some vertices will be copies of the same
original vertex v ∈ D. To properly work with this fact, there is a need to formally
distinguish the two vertex sets and map between them.

This is the first difference from an elimination tree of tree-depth where the
vertex sets are identical. Formally, this can be done by defining the function
org : V (P ) → V (D) which takes a vertex from the decomposition and returns
its original from the digraph D. Vertices x, y ∈ V (P ) are copies of the same
vertex if and only if org(x) = org(y).

Roots of a DAG are all of its vertices whose indegree is zero. Vertices whose
outdegree is zero are called leafs.

The level of a vertex in a DAG is the maximal length of a directed path from
a root to this vertex. The depth of a vertex is the maximal length of a path
from this vertex to a leaf. The depth of a DAG is the maximum depth over its
vertices.

Definition 2 (DAG-depth decomposition). A DAG-depth decomposition of
a digraph D is a DAG P and a surjective function org : V (P ) → V (D). Fur-
thermore, a DAG-depth decomposition is called valid if the following Neighbor
cover condition holds.

The Neighbor cover condition states that for every vertex v′ ∈ V (P ) such
that org(v′) = v, the following holds:
For every u ∈ N+

D (v),

1. there exists u′ ∈ V (P ) such that org(u′) = u and u′ is a descendant of v′ in
P , or

2. every path from any root of P to v′ contains a vertex u′ ∈ V (P ) such that
org(u′) = u.

Let P be a DAG-depth decomposition of some graph D such that the depth
of P is equal to the DAG-depth of D. P is then called an optimal decomposition.
Such decomposition exists for any digraph D, as Theorem 3 shows.

The following example of Figure 2 illustrates how a valid DAG-depth decom-
position can be used as a strategy for the cop player to catch the robber.

If the player is to use the decomposition in Figure 2 as a game plan, he starts
by covering the vertex E, since its copy is the only root.

Then, if the robber is in the vertex A or B, the player continues by covering
the vertex B. If the robber was in this vertex, he has been caught. Otherwise
he is in the vertex A, which the player will cover by the third cop and therefore
catch the robber.

If the robber was not in the vertex A or B, the player places the second cop
in the vertex G, whose copy is on the same level as the copy of B. There are now
three possibilities where the robber can be. The first one is that he is in one of
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Fig. 2. A simple graph and its valid and optimal decomposition

the vertices C, D. The second one is that he is in the vertex F . The last one is
that the robber is hiding in one of the vertices H, I, or J .

If it is the first case, the player continues by covering the vertex D, whose
copy is the child of the copy of the last covered vertex. If the robber was here,
he is caught, otherwise the cop is placed to C and catches the robber.

If it is the second case and the robber is hiding in the vertex F , the player
simply covers the vertex F and catches the robber. If the robber is in one of the
vertices H, I, or J , the player covers the vertex I, whose copy is the child of
the copy of the last covered vertex G. The robber then escapes either to vertex
H or to J . In the last step the player simply covers the vertex robber is in and
catches him.

The game rules outlined in this example are formally defined next.

Definition 3. Given a DAG-depth decomposition (P, org) of a digraph D, the
cop player’s strategy is as follows. The cops are placed on the vertices of D and
every cop is placed ”because of” some vertex of P . The following convention is
observed: if we say a cop is to be placed to a vertex v′ ∈ V (P ), he is actually
placed to v ∈ V (D) such that org(v′) = v, unless the vertex has been covered by
another cop before. In that case, no cop is placed in this step. Then, the strategy
based on (P, org) is described by two simple rules:

1. The first cop is always placed to one of the roots of P . Each subsequent cop
is placed to the out-neighborhood of the previous cop in P .

2. Among the possible positions from 1, the actually chosen one must have in
P a directed path to a copy of robber’s current position.
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The choice of the next vertex to be covered by a cop in Definition 3 is
generally non-deterministic, since more vertices can contain robber’s position as
a descendant.

Theorem 2. Let D be a digraph and (P, org) its DAG-depth decomposition of
depth k. Then the decomposition is valid if and only if every strategy based on
(P, org) by Definition 3 is winning for k cops.

Proof. (⇐) The decomposition is valid if the Neighbor cover condition holds by
Definition 2. Suppose the contrary: there exist a pair of vertices u, v ∈ V (D)
such that edge (u, v) ∈ E(D) exists. Also a vertex u′ ∈ V (P ) exists such that
org(u′) = u and u′ does not contain any copy of the vertex v as a descendant.
Since none of the conditions in the definition of the Neighbor cover condition
holds, there exists a path p from some root to u′ such that p does not contain
any copy of the vertex v.

Let the player use the decomposition according to rules specified in Defi-
nition 3. If the robber started on the vertex u ∈ V (D), then the player could
proceed along the path p, since all of its vertices contain the copy u′ ∈ V (P ) as
a descendant. When the player covers the vertex u because of u′, the robber can
escape to the vertex v ∈ V (D) since the path p does not contain any copy of
that vertex and therefore it is not covered by a cop. Since the vertex u′ does not
contain any copy of v as a descendant, the player playing according the Defini-
tion 3 can not cover v and the robber wins. The given decomposition therefore
represents a strategy which is not winning.

(⇒) The other direction is the subject of subsequent claims and will follow
from Theorem 4.

Theorem 3. If the DAG-depth of a digraph D is k, then there exists a valid
DAG-depth decomposition of D of depth k.

Proof. If |V (D)| = 1, then ddp(D) = 1. A decomposition with depth one exists,
since it consists also of the only vertex.
A decomposition that consists of one vertex is always valid, since the original
graph did not contain any edges and the Neighbor cover condition therefore
always holds.

If |V (D)| > 1 and D consists of the only reachable fragment, then the DAG-
depth is computed as ddp(d) = 1 + minv∈V (D)(ddp(D − v)). Such vertex v is
then the root of the decomposition and is connected to the roots of the recursive
decomposition of the rest of a graph.
Since the vertex v was chosen to be the root, all other vertices are its descendants.
Therefore all the vertices of its out-neighborhood are his descendants, and for the
rest of the graph the Neighbor covercondition holds by induction. That means
the decomposition is valid.

Otherwise, D consists of more reachable fragments. The decomposition of
each of them can be computed separately. When a disjoint union of them is
made to a single graph, its depth will be equal to the maximum of the decom-
positions of the fragments. This is in accordance with Definition 1.
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Since the decomposition is a disjoint union of the decompositions of the frag-
ments, by induction the decompositions of the fragments are valid. Therefore
their disjoint union is a valid decomposition too.

Theorem 4. Let D be a digraph for which there exists a valid DAG-depth de-
composition of depth k. Then, any strategy observing the rules of Definition 3 is
a winning strategy for at most k cops.

Proof. A decomposition (P, org) is valid if the Neighbor cover condition from
Definition 2 holds. The cop player wins when the cop is placed on top of the
robber to a vertex r and all vertices from N+

D (r) are already covered by the cops.
Let the last move of the cop be to vertex u ∈ V (D), because of its copy

u′ ∈ V (P ) as in Definition 3. We claim that the robber may move only to
vertices of D whose copies in P are reachable from u′ in P .

Before the robber moves, the previous statement holds because of the rule 2
of Definition 3.

Let the robber be on a vertex r ∈ V (D) and r′ ∈ V (P ) its copy such that
it is a descendant of u′. The statement still holds if the robber moves along an
edge (r, v) ∈ E(D) to vertex v ∈ V (D) which has not yet been covered by a
cop. From Definition 2 we know that in the decomposition P every path from
a root to r′ contains a copy of v or P contains a vertex v′ ∈ V (P ) such that
it is a descendant of r′. If v′ is a descendant of r′, it is also a descendant of u′

since r′ is its descendant. If every path from a root to r′ contains a copy of v,
such copy must be a descendant of u′. If it was not, then v′ would have to lie on
some path from a root to u′, and v would have already been covered by a cop
by Definition 3.

The previous invariant allows the player to always fulfill the rules of Defini-
tion 3.

The rules in Definition 3 end with covering a vertex from V (D) because of
its copy which is a leaf in decomposition P . That means that all the neighbors
of the covered vertex have been covered before and the robber is caught. The
decomposition therefore represents a winning strategy.

In every move, the vertex v ∈ V (D) is covered because of some v′ ∈ V (P ).
Such vertex v′ is always a child of the previous v′ and therefore all such vertices
create a path in P . If the player used more than k cops, the path would need to
be longer than k. Since the depth of P is k, such path can not exist. Therefore,
the decomposition represents a strategy for at most k cops.

4 Merging the copies

We now return to the size aspect of a DAG-depth decomposition (say, the one
obtained by Theorem 3). We start with an example that it could be exponentially
large. To reduce the size of the decomposition, some copies of the same vertex
should be merged while preserving validity of the decomposition. Not all vertices
with the same original can be merged (recall Figure 1, though.
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Theorem 5. There exists a digraph D such that its only valid and optimal DAG-
depth decomposition without merging any vertices is exponentially large.

Proof. Let D be a digraph such that V (D) = {a1, a2, . . . , an, b1, b2, . . . , bn} for
n ∈ N and E(D) = {(ai, aj)∪ (ai, bj)∪ (bi, aj)∪ (bi, bj)} for every 1 ≤ i < j ≤ n.
See Figure 3.

The digraph D consists of two isomorphic reachable fragments – V (D)\{a1}
and V (D) \ {b1}.

In the reachable fragment V (D)\{b1} the only optimal first move of the cop
player is placing the cop onto a1 since if he made any other move, one of the
subgraphs {a1, a2, . . . , an} and {a1, b2, . . . , bn} is left uncovered. These subgraphs
each require another n cops to catch the robber, while the DAG-depth of D is
n = 1 + n− 1.

After covering a1, the remaining digraph has the vertex set {a2, . . . , an, b2, . . . ,
bn}. Its decomposition can be found by induction.

The reachable fragment V (D)\{a1} is isomorphic to V (D)\{b1} and therefore
the only optimal move is to cover b1 and the remaining digraph is the same as
for the first reachable fragment.

The decomposition of D will thus contain decomposition of the remaining
digraph two times – as a descendant of a1 and as a descendant of b1. The
decomposition therefore consists of

∑n
i=1 2i = 2n+1 − 2 vertices.
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a1 a2 a3 an

b1 b2 b3 bn

. . .

. . .

a1 b1

a2 b2 a2 b2

a3 b3 a3 b3 a3 b3a3 b3

...
...

Fig. 3. A digraph and its exponentially large valid and optimal DAG-depth decompo-
sition without merging of any vertices

Definition 4. Two vertices u, v ∈ V (P ) are mergeable in the DAG-depth de-
composition (P, org) if the conditions 1 − 3 hold. Furthermore, u and v are
optimally mergeable if they are mergeable and also the condition 4 holds.

1. org(u) = org(v)
2. After merging u with v, P remains a DAG.
3. Merging u with v does not break the Neighbor cover property from Defini-

tion 2.
4. Merging u with v does not increase the depth of the decomposition.

For example, all duplicits in the example of Theorem 5 are optimally merge-
able.

The following is obvious from the definition:

Proposition 1. Let (P, org) be a valid and optimal DAG-depth decomposition
of some graph and u, v ∈ V (P ) an optimally mergeable pair of vertices of P .
Then, after merging u and v, P is still a valid and optimal decomposition.
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The trivial lower bound on the size of a valid decomposition is equal to
the number of vertices of the original graph, but such a decomposition may
not be optimal. The question of minimizing the size of a valid and optimal
decomposition is left for further investigations.

5 Closure of a DAG-depth decomposition

While previous text focused on how to construct a DAG-depth decomposition,
or a game plan, for a given digraph, now we look from the other side. Roughly,
having a game plan, can we easily say on which digraphs we can win with it?

Recall that in the case of tree-depth this was trivial - already the definition
of the tree-depth decomposition worked with the concept of a closure of a rooted
forest, which, at the same time, represents the unique maximal graph on which
the cop player always wins when following the decomposition as the game plan.

However, in the case of digraphs and DAG-depth, we again face unprece-
dented complications. A DAG-depth decomposition, unlike an elimination tree,
can contain more copies of a single vertex of the original digraph. Therefore a
problem, which was trivial in undirected graphs, becomes complex.

In the closure obtained from an elimination tree, each vertex is connected
with all of its former ancestors and descendants. In a DAG-depth decomposition,
more copies of a vertex can have different ancestors and descendants.

We thus define the following.

Definition 5 (Closure). A partial closure C is a directed graph obtained from a
DAG-depth decomposition (P, org) of some graph D, such that D is a spanning
subgraph of C and (P, org) is still a valid DAG-depth decomposition for the
digraph C. A closure is a maximal partial closure by inclusion.

Theorem 6. For a DAG-depth decomposition (P, org) of a digraph D, we con-
struct a digraph C, such that V (C) = V (D) by iteratively adding edges (u, v) for
u, v ∈ V (C) if for every u′ ∈ V (P ) which is a copy of u

1. there exists v′ ∈ V (P ) such that v′ is a copy of v and v′ is a descendant of
u′ in P , or

2. every path from a root of P to u′ contains a copy of v.

Then, C is a closure of P , which is thus unique.

Proof. The conditions in this theorem are the same as the Neighbor cover prop-
erty in Definition 2 and so C is clearly a partial closure. On the other hand,
every other edge not in E(C) would, by its own, violate Definition 2 and so C
is maximal.

These are some of the informal ideas worth further investigation - see [2] for
more details.
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6 Conclusion

We have presented a definition of a DAG-depth decomposition which extends
the concept of an elimination tree as a winning strategy for the cop player in the
lift-free version of the cops-and-robber game to directed graphs. Unlike in the
case of an elimination tree, the vertex set of a DAG-depth decomposition is not
equal to the vertex set of the original graph. That requires us to deal with the
two vertex sets and to find a way to map between them. Since the vertex sets are
not equal, the size aspect of the DAG-depth decomposition becomes a problem.
In the primitive handling, the size of the decomposition can grow exponentially.
To make the decomposition smaller and therefore acceptable as a strategy for
the cop player, we provide a definition of mergeable and optimally mergeable
vertices.

Secondly, we present a definition of the closure as the largest graph where
the given decomposition works as a winning strategy. We also provide a way to
deterministically obtain a closure for a given decomposition.

The main direction for possible future improvements and extension of our
results is to study the lower bounds on the size of a valid and optimal DAG-
depth decomposition of a digraph and a relationship between these bounds and
the properties of given digraphs.

References
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Abstract. Sending money in cryptocurrencies is majorly based on pub-
lic keys or their hashed forms—“addresses.” These long random-looking
strings are user unfriendly for transferring by other means than via copy-
and-paste or QR codes. Replacing such strings with identifiers chosen by
users themselves would significantly improve usability of cryptocurren-
cies. Such identifiers could be memorable, easier to write on paper or
to dictate over phone. Main challenge lies in designing a practically us-
able decentralised system for providing these identifiers. Former solutions
have been built as centralised systems or come with nonnegligible limita-
tions. Our solution is reminiscent of a prevalent e-mail system, which is
an already user friendly and desirably decentralised system. It is shown
that our approach is directly applicable also to other systems that use
long cryptographic identifiers.

1 Introduction

Nowadays, the most common way for sending money in cryptocurrencies is to
copy-and-paste payee’s address—usually a string of over 30 random characters
long hash of their public key—or to scan its QR code representation. For in-
stance, in Bitcoin such address looks like this: 1NS17iag9jJgTHD1VXjvLCEn-
ZuQ3rJDE9L. However, it is far from being user friendly in terms of manual
transfer—on paper, over phone or in one’s memory.

A primary requirement for a system providing mapping of user friendly iden-
tities to the original user unfriendly strings is to be decentralised. Centralised
systems usually already provide user friendly identities, while decentralised trust-
less systems often do not. It is crucial for the new system to keep up with the
systems it provides identities for, i. e., not to be centralised (and potentially a
single point of failure) in a decentralised environment.

Our system of cryptoaddresses, presented in this paper, introduces e-mail-like
identifiers, leveraging the existing DNS system. Usage of DNS provides straight-
forward decentralisation on the level of “domain namespaces,” designating a
server of user’s own choice for each of their domain names. Servers provide res-
olution of cryptoaddresses to the original cryptographic identifiers. The system
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is secured both on the level of DNS and communication with servers. The scope
of applicability is not limited to cryptocurrencies—the system is universal with
variety of possible applications.

The remainder of this paper is organised as follows. Section 2 presents previ-
ous work related to the problem. The overall design of the system is discussed in
section 3, including definitions of used identifiers. Section 4 elaborates on details
of utilisation of the DNS system, followed by a design of our protocol SCAP in
section 5. Security considerations are presented in section 6. We discuss possible
future work in section 7 and provide final conclusions in section 8.

2 Related Work

Endeavours to make complex addresses more usable began within Bitcoin by
a concept of “first bits.” First bits make use of implicit information contained
in cryptocurrency’s database of transactions—blockchain. Using first bits, an
address can be identified by a short prefix of only several characters. This prefix
is expanded to a full address by looking up in the blockchain the first address
matching the prefix [8]. However, first bits have also several disadvantages. Most
notably, prefix lookup and obtaining a new prefix are time-expensive operations.
Besides, it is not guaranteed to be good-looking, the address has to be already
used, i. e., to have some money sent to it (this fact alone goes against a common
practice of not reusing addresses in cryptocurrencies), and the prefix cannot be
revoked or reassigned.

Later on, many centralised systems arose, e. g., Keybase [5] or Gravatar [9].
Nonetheless, none of them has ever been adopted by the cryptocurrency com-
munity.

In 2014, community of a cryptocurrency called Monero created a project
OpenAlias [16]. OpenAlias enables translation of domain names to addresses of
various cryptocurrencies. This is achieved by specially crafted TXT records in
DNS zones of respective domain names. While the record can be secured with
DNSSEC against tampering, similarly to first bits, revocation and replacement
of the cryptocurrency address included in the record is a subject to expiration
period (TTL) of DNS caches, therefore a change in the record may be visible
after delay.

All current approaches share a drawback in their design: they are one-to-one
mappings. It is not possible to dispense a different cryptocurrency address to
every user. Instead, all obtain the same one. This is a nonnegligible flaw in terms
of privacy preservation. Not only is publicly known the connection between the
identity and the address, but the address itself gets reused, making linkability
of different payments to a single entity trivial.

Sending Money Like Sending E-mails
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3 Design of Cryptoaddresses

Our scope is a decentralised system for providing users with arbitrary identities.
Primary goal of this system is to translate these identities to addresses in any
cryptocurrency. We call this system cryptoaddresses.

Systems based on a shared database, e. g., first bits, retain impractical prop-
erties related to the database use and maintenance. In contrast, systems built
upon existing DNS infrastructure can leverage its inherent distribution of re-
sponsibility. As with e-mail, every administrator of a domain name designates
servers responsible for receiving e-mails for this particular domain name. Thence,
cryptoaddresses are made decentralised by utilising DNS, and further employing
DNSSEC to secure information stored in and retrieved from the DNS.

3.1 Format of Cryptoaddresses

A cryptoaddress (also called a Crypto ID, abbreviated as CID) is formed of a
local part, an @ symbol and a domain part : local-part@domain-part. A cryptoad-
dress intentionally resembles an e-mail address, because of familiarity of these
addresses to users—the format is nowadays easily recognisable and is known to
form an address. The same format is also used in XMPP to form an XMPP
address (or a Jabber ID, JID) [15].

Since the local part may also contain @ symbols, always the last one is used
as a separator of the local and domain part. Format of the local part is not
restricted and may be formed of any valid UTF-8 string. Length of the local
part may be up to 1023 bytes; zero length is allowed. This length limit is high
enough for any practical use case and at the same time gives a concrete upper
bound useful for implementers.

The domain part must conform to the format of a fully-qualified domain
name (FQDN) [4], without an ending dot. Internationalised domain names are
allowed—conversion to standard ASCII format of domain names is done in a
way specified by the IDNA standard [12].

3.2 Identifiers of Addressable Services

Single cryptoaddress may be used as identity for various systems and services at
the same time. To internally differentiate one from another, each such address-
able service must be uniquely identified. This is especially of a concern within
cryptocurrencies as there are cryptocurrencies with ambiguous names and/or
codes (or even multiple codes). To provide a guidance for such situations, we
propose usage of a hash of their genesis block (i. e., the very first block in the
block chain) in hexadecimal encoding, which provides unique identification not
only among other cryptocurrencies, but also among other systems. Examples for
few cryptocurrencies are shown in table 1.

For other kinds of services, e. g., a communication platform Bitmessage1, a
single identifier needs to be established by them. We do not suggest any con-

1 https://www.bitmessage.org/wiki/Main_Page
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Table 1. Examples of service identifiers for several cryptocurrencies

Bitcoin 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
Litecoin 12a765e31ffd4059bada1e25190f6e98c99d9714d334efa41a195a7e7e04bfe2
Dogecoin 1a91e3dace36e2be3bf030a65679fe821aa1d6ef92e7c9902eb318182c355691

crete identifier for individual services. Nevertheless, it may be suggested to use
lowercase ASCII characters for these identifiers, mainly for their ease of use and
recognition.

Note that these service identifiers are important for flawless internal func-
tioning of the system while users usually do not encounter them. For details on
their usage in the protocol see section 5.2.

3.3 System Components

The system is designed of several components: a client, a cryptoaddress, a SRV
DNS record, a cryptoaddress server and a protocol for communication with the
server. The cryptoaddress server is specific for the domain given in the cryptoad-
dress. For a single cryptoaddress there might be more than one such server—for
load balancing or high availability purposes, as detailed in section 4.

A client communicates with a cryptoaddress server via a Simple Cryptoad-
dress Protocol, described in section 5. The communication is encrypted with a
shared key derived from server’s public key and client’s private key using ECDH
algorithm [13].

4 DNS Records

An intermediate step in the translation of a cryptoaddress to target data is
obtaining an address of the translating server. This address is provided by DNS
infrastructure. Out of available DNS record types we choose SRV record. It is
a record type dedicated for service discovery, i. e., for this kind of information,
and provides great flexibility for designated server’s FQDN, L4 protocol, port
number, priority and weight within a set of servers designated for the same
application protocol [10].

In DNS zone format the record has the following form:

_service._proto.name. TTL class SRV priority weight port target.

We propose the service identifier scap and a TCP port 4332. Nonetheless,
a server administrator may choose to use arbitrary port number since clients
retrieve information about it in the SRV record.
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4.1 FQDN Formation

Traditional approaches for establishing a secure connection to a server include
X.509 certificates and trust-on-first-use (TOFU) trust model with server’s pub-
lic key provided by the server itself. Nonetheless, to simplify both the secure
key distribution and the communication protocol, we leverage an idea originally
found in DNSCurve [7]. Instead of sending the server’s public key during the
initial protocol handshake, we encode it in the server’s name. Therefore, a client
obtains the key from server’s FQDN which is included in the SRV record and
even the very first message sent to the server can be hence encrypted. Security
achieved with this approach is higher than with TOFU model due to the secure
key distribution. In this section we describe how the key encoding into FQDN
is done.

We place the key preceded by a version prefix into a dedicated FQDN label.
By “FQDN label” we understand a part of FQDN delimited by dots from other
FQDN labels. For encoding of the version prefix and public key we use the same
base-32 encoding as DNSCurve. The specification of used base-32 encoding is
provided within the DNSCurve specification in [7]. Cryptoaddresses are likely
to be used together with DNSCurve, therefore it is advantageous to use single
encoding algorithm. Besides, a standard base32 encoding algorithms are not
suitable for use in FQDN due to their usage of padding character = (equals
sign) [11].

Version prefix is a four-character string 1000 which is formed by a base-32
encoded 2-byte little endian number 1. Encoding of 2 bytes always results in
4 characters, therefore this FQDN label can be always safely split to a version
prefix and a key before performing an actual base-32 decoding. If some further
version of cryptoaddresses uses more labels in a FQDN, version prefix must
be always present in the leftmost label. Version does not only determine the
actual FQDN creation, it also indicates version of the protocol to be used for
communication with the server. This way there is no need to indicate version
in the messages sent between a client and a server and compatibility can be
resolved before initiation of the communication.

After the version prefix a base-32 encoded public key follows. As a cryp-
tographic scheme for the key we use Curve25519, a scheme based on elliptic
curves. Its choice is based on its well-founded choice of elliptic curve and con-
stants, availability of high-grade implementations and small size of keys, while
providing reasonable security [3]. Although small size of public keys is not nec-
essary, it is still beneficial as it allows keys to be directly used. Still, usage of
elliptic curve cryptography makes it possible to leverage ECDH algorithm for
establishment of a shared key without any additional communication [13].

4.2 Deployment Considerations

When a cryptoaddress server serves many domains or domains whose DNS zones
are out of control of the cryptoaddress server operator, it may be more conve-
nient to use an alias in the domains’ SRV records. An alias can be, for instance,
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scap1.example.com pointing via a CNAME DNS record to the canonical name as
described above. This provision also makes it easier to rotate keys used by cryp-
toaddress servers (e. g., when corresponding private keys are exposed during a
security breach), as it requires change to only one DNS record per cryptoaddress
server.

It is possible to operate several cryptoaddress servers, e. g., to enhance avail-
ability of cryptoaddresses within a domain. However, their operator must ensure
that they provide equivalent information. In a case one server is missing informa-
tion about a pair of a certain cryptoaddress and a service, client processes this
information as authoritative and does not repeat their request to other servers.

An example of SRV records for a setup of two load-balanced servers and one
backup server for a domain example.org follows (each record is broken into 2
lines by “\” in order to fit into this limited space):

_scap._tcp.example.org. 86400 IN SRV 10 65 4332 \

1000vs2nh9b3gz04db4rgpjmzv2cwlnpvh3qzn6xljwyxmnp57j8h0d.example.org.

_scap._tcp.example.org. 86400 IN SRV 10 35 4332 \

100027q245f6cglhdjyy91vk5btyszk6g5fnhz7mvsc6mtfjh2q0c14.example.org.

_scap._tcp.example.org. 86400 IN SRV 30 0 4332 \

10009ydzvtccqmbzw6q0zlgumtr227g0kwb2zk8h5rv7yruj7gg6zh3.example.org.

The first two servers have priority 10 (which is higher than priority 30) with
weights 65 and 35, meaning that requests to these two servers will be statistically
divided by ratio 65:35. If both of them are unavailable to clients, a server with
the next lowest priority is selected, i. e., the server with priority 30 in this case.
All three servers use TCP port 4332. The last part of each record (all starting
with 1000...) is the actual address of the cryptoaddress server with encoded
version and public key.

5 Simple Cryptoaddress Protocol

Simple Cryptoaddress Protocol (abbreviated SCAP) is designed for communica-
tion of clients with cryptoaddress servers. It is a synchronous protocol minimising
the number of needed round trips (i. e., request-reply pairs), while maintaining
its universality and extensibility. Its security design is inspired by DNSCurve
extension of DNS [7]—it shares with DNSCurve the scheme for keys and their
exchange, nonce extension technique, or use of cryptographic boxes. Nonethe-
less, the binary format differs and different is also our choice of algorithm for
cryptographic boxes (for authenticated encryption).

Distribution of servers’ public keys is carried out by embedding them in
FQDN as described in section 4.1, therefore every client has a public key of the
server they connects to. A client provides the server with their public key in
the first message they sends to it. In order to prevent connection hijacking, the
server remembers client’s public key for the duration of the session and the client
never resends their public key within the session.

For cryptographic boxes we use IETF standard ChaCha20-Poly1305 authen-
ticated encryption algorithm [14].
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5.1 General Message Format

Format of messages slightly differs depending on whether a message is sent by
a client or a server and whether it is client’s first message in the session or not.

First Client’s Message

– 32 bytes: client’s public key.
– 6 bytes: client’s nonce choice.
– Cryptographic box with the following content: H

Follow-up Client’s Message

– 6 bytes: client’s nonce choice.
– 6 bytes: server’s nonce extension.
– Cryptographic box with the actual message content.

Server’s Message

– 6 bytes: client’s nonce.
– 6 bytes: server’s nonce extension.
– Cryptographic box with the actual message content.

Nonces A nonce in this context is a 96-bit number that is unique for each mes-
sage within a single shared key (otherwise the shared key would be exposed).
Half of the nonce is chosen by the client and half by the server. While the ba-
sic principle for nonce creation is shared with DNSCurve, details differ due to
session-oriented nature of the communication in SCAP. Mainly, only the first
client’s message uses zero server’s nonce extension for the cryptographic box—
any follow-up client’s message repeats the extension from the last server’s mes-
sage. Similarly, server always repeats client’s chosen part of the nonce from their
last message. Since neither client nor server repeat their part of the nonce, each
message is guaranteed to have a unique nonce.

5.2 Protocol Messages

The protocol is client-driven—the server only sends responses to client’s requests.
Both requests and responses use a format based on the netstring encoding, as
defined in [2]. In brief, a netstring has a format [len]:[string],, where [len]

is a decimal representation of length of [string] in bytes. Netstrings are usually
catenated, but are also allowed to be nested.

The first byte of a message determines a type of the message. We specify the
following types of client’s messages:

H A hello message, sent right after opening the connection. The message content
consists only of this byte. The primary purpose of this message is to provide
the server with the client’s public key.
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Q A query request. It consists of two netstrings (nested inside of the main
message netstring): a cryptoaddress to be resolved and a service identifier.

E This message type is reserved for possible use by future protocol extensions.
Nonetheless, its exclusive use by extensions is not strictly required—an ex-
tension may also define new message types.

X A type reserved for proprietary/non-standard protocol extensions. The mes-
sage consists of the extension’s name (without the leading “X” which would
normally signal that it is a non-standard extension) followed by a space
(U+0020 in Unicode) and the actual data of the message. Non-standard
extensions are required to use this message type.

A server always responds to these messages with a message with one of the
following types:

O Message signals that no error occurred and may also contain the data the
client requested.

Z Temporary failure. The client should retry their request later.

D Permanent failure.

In a case of a failure the message should include a human-readable description
right after the first byte.

More specifically regarding the positive responses, a response to the H mes-
sage is either empty or contains a list of extensions supported by the server
delimited with a space (U+0020). An extension’s name may be at most 31 bytes
long and must not contain a space (U+0020), otherwise any UTF-8 valid byte
sequence is allowed, although usage of uppercase ASCII letters and digits is
recommended. Proprietary extensions’ names must begin with ASCII character
“X”. Empty extension names are not allowed; this also includes an extension
name “X”, which is therefore treated as empty.

A positive response to the Q message contains the data corresponding to the
given cryptoaddress within the specified service.

5.3 Example of a Query

In the following example, “C >: ” denotes a message sent by a client and
“< S: ” denotes a reply sent by a server. Only the content of cryptographic
boxes is shown. The client requests a bitcoin address for a cryptoaddress john-
doe@example.com.

C >: 1:H,

< S: 1:O,

C >: 92:Q19:johndoe@example.com,64:000000000019d6689c085ae165831e934ff763

ae46a2a6c172b3f1b60a8ce26f,,

< S: 35:O1NS17iag9jJgTHD1VXjvLCEnZuQ3rJDE9L,
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6 Security Considerations

Incorporation of several components potentially opens more possibilities for at-
tacks. We are therefore discussing security impact of each component.

On network level, a connection to and communication with a cryptoaddress
server is secured by authenticated encryption. The server’s public key is known
to the client before initiation of the connection. Therefore, the communication is
safe from intercepting and tampering attacks. However, before a client connects
to a cryptoaddress server, they queries a DNS server in order to obtain a public
key and an IP address of the cryptoaddress server. Unless secured, the DNS
traffic is unencrypted and forgeable. Therefore, we put as a requirement to use
DNSSEC to sign records leading to the SRV records and associated A/AAAA
records, including these. Additionally, we recommend usage of DNSCurve to
provide users with confidentiality of their DNS queries [7].

Unless a cryptoaddress server is operated by the same person or company
who uses it for their cryptoaddresses, a certain amount of trust in the server’s op-
erator is needed. The risk is that the operator could replace user’s cryptographic
identifier with their own one or one of some colluding party. For static cryptoad-
dress mappings a monitoring can be setup to detect potential dishonesty of the
operator. However, there is no general solution for this issue yet.

Special considerations are needed for cryptoaddresses themselves. Threats
related to them can be generalised to spoofing.

6.1 Cryptoaddress Spoofing

An attacker’s goal we mainly consider here is mimicking cryptoaddresses in order
to gain ability to forge cryptographic identifiers connected to the cryptoaddresses
without the need to actually attack the cryptoaddress server.

Primary problem are visually similar characters, e. g., “1” (digit one) and
“l” (lowercase L) in ASCII or “c” (Latin lowercase C; U+0063) and “c” (Cyril-
lic lowercase es; U+0441) in Unicode. There is no straightforward solution to
this issue. Indeed, a cryptoaddress formed by the alternative characters (e. g.,
“john@examp1e.org” with lowercase L replaced by digit one) might be the au-
thentic cryptoaddress and not a forgery.

Local part of a cryptoaddress may be further affected by the permission
to include any valid UTF-8 character. Unicode enables some characters to be
either formed by a single Unicode character or by a combination of two or more
Unicode characters [6]. An example of such a character is the German “ä”: this
is either a single character U+00E4 or a combination of “a” and the combining
diacritical mark umlaut—U+0061 and U+0308.

Furthermore, special or unprintable characters could be inserted into an oth-
erwise legitimate cryptoaddress. Client applications should not interpret these
characters and instead signalise their presence in the cryptoaddress. This is al-
ready a common practice with today’s GUI applications.

Note that the risk of spoofing of cryptoaddresses, e. g., in the context of e-
mails or web pages, is comparable with the risk of spoofing of cryptographic
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identifiers which a particular cryptoaddress represents, although spoofing of the
original identifiers might be easier due to their random-looking nature [1].

7 Future Work

In this paper we present the concept of cryptoaddresses in its basic form. Future
work will focus on possible extensions, e. g., providing various information to
authenticated users. In case of cryptocurrencies this may include information
about index of the last issued dynamic address.

Another challenge, which is not yet covered, is the unsecured nature of in-
formation provided by a cryptoaddress server. An efficient method of preventing
the server from being able to undetectably forge sensitive information, would
reduce the level of trust in the server’s operator that is currently needed.

8 Conclusion

Many systems whose central features include usage of cryptography to secure
their functioning present users with long random-looking identifiers. These iden-
tifiers are supposed to be shared and to identify users or their resources within
the systems. To improve usability of such systems, we propose in this paper a
decentralised system of cryptoaddresses which resemble well-known e-mail ad-
dresses. The system enables cryptoaddresses to be mapped back to the original
identifiers.

Our proposed system includes leveraging of the existing DNS system secured
by its DNSSEC extension; implicit distribution of public keys of servers; and a
design of a simple communication protocol between a cryptoaddress client and
a server, based on top of a secure communication channel. Although primarily
aimed at cryptocurrencies, the presented system is flexible, extensible and can
be used for a variety of systems with cryptographic identifiers.
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Abstract. Verifying multi-threaded programs is becoming more and
more important, because of the strong trend to increase the number
of processing units per CPU socket. We introduce a new configurable
program analysis for verifying multi-threaded programs with a bounded
number of threads. We present a simple and yet efficient implementation
as component of the existing program-verification framework CPAchecker.
While CPAchecker is already competitive on a large benchmark set of
sequential verification tasks, our extension enhances the overall applica-
bility of the framework. Our implementation of handling multiple threads
is orthogonal to the abstract domain of the data-flow analysis, and thus,
can be combined with several existing analyses in CPAchecker, like value
analysis, interval analysis, and BDD analysis. The new analysis is modular
and can be used, for example, to verify reachability properties as well as
to detect deadlocks in the program. This paper includes an evaluation
of the benefit of some optimization steps (e.g., changing the iteration
order of the reachability algorithm or applying partial-order reduction)
as well as the comparison with other state-of-the-art tools for verifying
multi-threaded programs.

1 Introduction

Program verification has successfully been applied to programs to find errors in
applications. There exist many approaches to verify single-threaded programs
(cf. SV-COMP for an overview [1]), and several of them are already implemented
in the open-source program-verification framework CPAchecker [4, 10]. For multi-
threaded programs a new dimension of complexity has to be taken into account:
the verification tool has to efficiently analyze all possible thread interleavings.
CPAchecker did not support the analysis of multi-threaded programs for a long
time. Our work focuses on a new, simple configurable program analysis that
reuses several existing components of the framework. The approach is sound and
can be combined with several steps of optimization to achieve an efficient analysis
for multi-threaded programs.

Our analysis is based on a standard state-space exploration using a given
control-flow automaton that represents the program. For a program state with
several active threads, we compute the succeeding program state for each of those
threads, i.e. basically we compute every possible interleaving of the threads. The
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approach is orthogonal to other data-flow based analyses in CPAchecker, thus
it can be combined with algorithms like CEGAR [7] and analyze an potentially
infinite state space.

Related Work. A prototypical version of our analysis was already applied for
the category of concurrent programs during the SV-COMP’16 [1]. Due to some un-
supported features and missing parts of the optimization that where implemented
later, the score in this category was low at that time. The experimental results
that we report show that the current version of the implementation performs
much better.

Just like several other tools [8, 9, 15], we explore possible interleavings of
different thread executions and our optimization methods include partial order
reduction [12]. In contrast to verification techniques for multi-threaded programs
like constraint-based representation [13] that limits the domain to Horn clauses
and predicate abstraction or sequentialization [11, 16] that transforms the program
on source-code level before starting the analysis, our approach computes the
interleaving of threads on-the-fly and is independent from the applied analysis.
This makes it possible to integrate our approach easily with data-flow analyses
of different abstract domains, such as value analysis [5] and BDD analysis [6].

2 Analysis of Multi-Threaded Programs in CPAchecker

The following section provides an overview of some basic concepts and definitions
used for our approach. We describe the program representation and the details
of our configurable program analysis.

2.1 Program Representation

A program is represented by a control-flow automaton (CFA) A = (L, l0, G),
which consists of a set L of program locations (modeling the program counter), a
set G ⊆ L×Ops×L (modeling the control flow with assignment and assumption
operations from Ops), and an initial program location l0 (entry point of the main
function).

Let V be the set of variables in the program. The concrete data state for
a program location assigns a value to each variable from the set V ; the set C
contains all concrete data states. For every edge g ∈ G, the transition relation is
defined by g→⊆ C ×{g}×C. The union of all edges defines the complete transfer
relation→=

⋃
g∈G

g→. If there exists a chain of concrete data states 〈c0, c1, ..., cn〉
with ∀ci : there exists a program location li for which ci is a concrete data state
and ∀i : 1 ≤ i ≤ n⇒ ∀i : 1 ≤ i ≤ n⇒ ∃g : ci−1

g→ ci ∧ (li−1, g, li) ∈ G, then the
state cn is reachable from c0 for l0.

Our analysis is a reachability analysis and unrolls the program lazily [14] into
an abstract reachability graph (ARG) [2]. The ARG is a directed acyclic graph
that consists of abstract states (representing the abstract program state, e.g.,
including program location and variable assignments) and edges modeling the
transfer relation that leads from one abstract state to the next one.
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2.2 ThreadingCPA

CPAchecker is based on the concept of configurable program analysis (CPA) [3].
Thus, different aspects of a program are analyzed by different components
(denoted as CPAs). A default analysis in CPAchecker [4] uses the LocationCPA
to track the program location (program counter) and the CallstackCPA to track
call stacks (function calls and their corresponding return location in the CFA).
Thus, for the analysis of sequential programs, each abstract state that is reached
during an analysis consists of exactly one program location and one call stack.

For the analysis of multi-threaded programs we have developed a new Thread-
ingCPA that replaces both the LocationCPA and the CallstackCPA and explores
the state space of a multi-threaded program on-the-fly. The benefit of the Thread-
ingCPA is that it is able to track several program locations (one per thread)
together with their call stacks (also one per thread). For simplicity of the defi-
nition we ignore the handling of call stacks in the next section. The reader can
simply assume that for each program location there is also a call stack. The
ThreadingCPA has to handle multiple call stacks (one per thread), whereas the
CallstackCPA only handles a single call stack.

The definition of the ThreadingCPA T = (DT, T,mergeT, stopT) follows the
structure of a configurable program analysis:
Domain: The abstract domain DT = (C, T , [[·]]) is a triple of the set C of
concrete states, the flat semi-lattice T = (T,v,t,>), and the concretization
function [[·]] : T → 2C . Let I be the set of all possible thread identifiers, e.g., a
set of names used to identify threads in the program. The type of abstract states
T : I −→◦ L consists of all assignments of thread identifiers t ∈ I to program
locations l ∈ L = L ∪ {>L}. The special program location >L represents an
unknown program location. The top element > ∈ T , with >(t) = >L for all
t ∈ I, is the abstract state that holds no specific program location for any thread
identifier. Each abstract threading state s ∈ T is represented by the assignments
{t1 7→ lt1 , t2 7→ lt2 , ...} of thread identifiers to their current program location. The
partial order v induces a semi-lattice for the abstract states. The join operator
t yields the least upper bound of given abstract states. The top element > of
the semi-lattice is defined as > = tT .
Merge: The ThreadingCPA uses the merge operator mergesep, which does not
combine different elements.
Stop: The ThreadingCPA uses the termination operator stopsep, which defines
coverage only in case of equal abstract states.
Transfer: The transfer relation  T determines the syntactic successor for the
current state and is based on the transfer relation of the LocationCPA. The
implementation is simple: The transfer relation returns all possible successors for
all threads that are active in an abstract state, i.e., it applies the transfer relation
of the LocationCPA for each active thread. Additionally, thread-management-
related operations are included, such that creating or joining threads (when
calling pthread_create or pthread_join) is defined. It is in theory sufficient to
only handle these two function calls, because other thread-related function calls
do not change the number of threads or the progress of the state-space exploration.
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The transfer relation  T has the transfer s g s′ for two abstract states s =
{t1 7→ lt1 , t2 7→ lt2 , ..., tN 7→ ltN } and s′ = {t1 7→ l′t1 , t2 7→ l′t2 , ..., tN 7→ l′tM }
and g = (lti , op, l′ti) if

1. the operation op matches the pthread_create statement for ti that is in
program location lti and creates a new thread tnew starting from a CFA node
ltnew
0 ∈ L:

s′ = s \ {ti 7→ lti} ∪ {tnew 7→ ltnew
0 } ∪ {ti 7→ l′ti}

i.e., an existing thread ti matches the program location lti and moves along
the edge g towards program location l′, and the initial program location ltnew

0

of the new thread tnew is added to the current abstract state.
2. the operation opmatches the pthread_join statement for ti that is in program

location lti and waits for a thread texit to exit, texit exits at program location
ltexit

E , and texit 7→ ltexit

E ∈ s:

s′ = s \ {ti 7→ lti} \ {texit 7→ ltexit

E } ∪ {ti 7→ l′ti}

i.e., an existing thread ti matches the program location lti and moves along
the edge g towards program location l′ti , and the program location ltexit

E of
the thread texit is removed from the current abstract state, if the thread texit
has already been at this program location.

3. otherwise, if the operation op is not related to thread management:

s′ = s \ {ti 7→ lti} ∪ {ti 7→ l′ti}

i.e., thread ti matches the program location lti and moves along the edge
towards l′ti .

For a basic analysis for multi-threaded programs the handling of the operations
pthread_create and pthread_join is sufficient. Additional thread management
like mutex locks (details in Section 4.3) can be applied on top of this transfer
relation. We assume C statements as atomic statements, i.e., interleaving of
threads is considered to happen on statement level (matching the encoding of
the program as CFA). This might be insufficient for real-world programs, but is
good enough for several examples and in theory the CFA could be inflated with
read and write operations for memory registers.

2.3 Example

The following example applies our new ThreadingCPA to a given program. In
contrast to the simplified illustration below, a real-world analysis would combine
the ThreadingCPA with another analysis, e.g., to track assignments, such as
value analysis or BDD analysis.

The example program (cf. Fig. 1 for the source code) creates two additional
threads that change the value of global variables. Afterwards, the main method
checks the assignment of a global variable. In this example, the property holds.
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1 pthread_t id1, id2;
2 int i=1, j=1;
3

4 void main() {
5 pthread_create(&id1, 0, t1, 0);
6 pthread_create(&id2, 0, t2, 0);
7

8 pthread_join(id1, 0);
9 pthread_join(id2, 0);

10

11 assert(j <= 8);
12 }
13

14 void t1() {
15 i+=j;
16 i+=j;
17 }
18

19 void t2() {
20 j+=i;
21 j+=i;
22 }

Fig. 1: Program with concurrent
threads
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pthread_t id1, id2;

int i=1; j=1

pthread_create(&id1, 0, t1, 0);

pthread_create(&id2, 0, t2, 0);

pthread_join(&id1, 0);

pthread_join(&id2, 0);

assert(j<=8);

A

B

C

i+=j;

i+=j;

X

Y

Z

j+=i;

j+=i;

main

t1 t2

Fig. 2: CFA for the functions of the
program

The program’s functions are represented as CFAs in Figure 2. The ThreadingCPA
produces the ARG in Fig. 3, where each abstract state is labeled with the indices
of the program locations of all active threads.

The analysis starts at entry location l0 of the main function and analyzes
all possible interleavings. After reaching the statement pthread_create, an ad-
ditional program location is tracked for the newly created thread, e.g., when
reaching program location l3 in the main function, the abstract state is enriched
with the initial program location lA of the newly created thread.

As the ThreadingCPA merges its abstract states when reaching the same
program locations via different execution paths, the diamond-like structure in
the ARG is the result of interleaved thread-execution of two (or more) threads.
When exploring the statement pthread_join, the program-exit location of the
exiting thread is removed from the abstract state. This is visible in Fig. 3 for each
abstract state with an outgoing edge leading from program location l4 towards
program location l5, because the program-exit location lC of the joining thread t1
(identified by id 1) is removed from the abstract state.

3 Optimization

The simple definition of the ThreadingCPA allows (and needs) a wide range
of optimization to gain competitive efficiency. In the following, we define some
approaches and show how fluently they match existing concepts in CPAchecker.
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main 7→0

main 7→1

main 7→2

main 7→3
id17→A

main 7→3
id1 7→B main 7→4

id17→A
id27→X

main 7→3
id1 7→C main 7→4

id1 7→B
id2 7→X

main 7→4
id17→A
id2 7→Y

main 7→4
id1 7→C
id2 7→X

main 7→4
id17→B
id2 7→Y

main 7→4
id17→A
id27→Z

main 7→5
id2 7→X

main 7→4
id1 7→C
id2 7→Y

main 7→4
id17→B
id2 7→Z

main 7→5
id2 7→Y

main 7→4
id17→C
id27→Z

main 7→5
id27→Z

main 7→6

main 7→7

Fig. 3: ARG of the interleaved threads of the program

3.1 Partitioning of Reached Abstract States

The reachability algorithm [3] has two important operators merge and stop that
are defined as operations on sets of reached abstract states. These operations can
merge abstract states and combine their information into a new abstract state or
detect coverage, i.e., an abstract state is implied by another one and thus the
exploration can stop at that point. In each iteration of the reachability algorithm,
these operators are by default applied to all combinations of new explored
abstract states and previously reached abstract states. However, applying such an
operator to all previously reached abstract states is inefficient, because most of
the abstract states are irrelevant for a concrete application of these operators. For
example, comparing abstract states from different program locations is useless,
because there will not be any important relation between them.

Partitioning the set of abstract states makes it possible to perform both
operations much more efficiently, as only a (small) subset of the previously reached
abstract states has to be considered in the computation. This basic optimization is
also applied for verifying single-threaded programs. Each partition is identified by
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a constant key that is based on the program location of the abstract state, as only
states from equal program locations are considered for merging or coverage. We
extended the existing partitioning of abstract states, such that it uses the tuple
of program locations for all threads in an abstract state. This new partitioning
can also be combined with partitionings provided by other CPAs.

3.2 Waitlist Order
For finding property violations it is often sufficient to only analyze interleavings
with a low number of thread interleavings. As the exploration algorithm in
CPAchecker analyzes the reachable state space state by state, there exists the
possibility to prioritize abstract states during the exploration: The abstract states
waiting to be analyzed are simply sorted by some criteria. This optimization
is a heuristic depending on the internal structure of the analyzed program and
the executed analysis. For a bug-free program this heuristic does not bring any
benefit. however an existing error path in a faulty program might be found sooner.

The most-often used orderings of abstract states cause the state-space explo-
ration to perform either depth-first search (DFS) or breadth-first search (BFS),
i.e., the list of waiting abstract states is ordered in the same manner as abstract
states are explored (BFS) or reverse (DFS). For multi-threaded programs, we
added a new ordering of this list based on the number of active threads, such
that states with fewer active threads are considered first. The new ordering can
also be combined with existing orderings, i.e., the first criteria for ordering is
based on the number of active threads, the second criteria uses the exploration
order.

3.3 Partial-Order Reduction
With multi-threaded programs, the most common form of optimization is partial-
order reduction (POR) [12, 18, 19]. POR aims to avoid unnecessary interleavings
of threads and improves the performance of the analysis by reducing the explored
state space. However, its application depends on the property to be verified,
because all necessary program paths must remain reachable.

In our case (reachability analysis), we started with a simple separation of pro-
gram operations (modeled as CFA edges) into thread-local and global operations.
We conservatively apply a static analysis for all program variables and memory
accesses, on whether they are declared and used in global scope or only locally
in the context of a thread. Because CPAchecker uses several dummy operations
(e.g., for temporary variables or function returns), a majority of CFA edges is
marked as thread-local.

If a statement is thread-local for a thread, we do not simulate any interleaving
after analyzing this operation, but the analysis executes the current thread
further, until a global operation (in the same thread) is reached. This behavior is
sound, because no interaction between threads is possible, due to the definition of
thread-local operations. Thus, we only need to synchronize all available threads
after the next global transition.

Our approach can analyze program with loops as well, because we execute
both paths, i.e., the loop and the concurrent thread, and none of them disables
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the other path. Thus, any possible interaction between CFA edges of the loop and
other threads is considered. Our approach handles loops implicitly, thus we do
not have to actively check for loops, but simply apply the reachability algorithm
combined with the described POR technique.

4 Extensions

During our work on the analysis of multi-threaded programs, we explored some
assumptions in CPAchecker that need to be considered when integrating such a
basic analysis as the ThreadingCPA. We also noticed several features that can
also be specified or implemented for the analysis of multi-threaded programs. In
the following, we describe the extensions that we have developed in order to use
the full potential of the framework.

4.1 Cloning for CFAs

CPAchecker has a modular structure, such that many components can be com-
bined without knowing (and depending on) details about each other. As the
analysis of multi-threaded programs should fit into this design, we decided not
to modify each analysis that should be combined with our new approach, but
use an approach that allows us to re-use as much existing code as possible.

The basic problem with the existing components of CPAchecker is that many
of them rely on knowing only their current function scope, and solely identify
a variable by its name combined with the name of the function scope it was
declared in. For example, many analyses (including value analysis and BDD
analysis) use the identifier f ::x for a variable x declared in function f . This
identifier is used in the internal data structures whenever the variable is used
during the program analysis. In a multi-threaded program, the same function f
might be called in different threads, such that f ::x is not unique for one variable
any more at a certain point in the program’s execution. The existing analyses do
not know about two variables with the same identifier and would, e.g., assign a
wrong value to one of them.

Our solution is simple: We use different function names for each thread by
cloning the function and inserting the corresponding indexed function name. For
a function f we create a clone f ′ by copying the corresponding CFA nodes from
L and edges from G, while renaming all appearances of the function’s identifier
in the clone. Cloning functions causes all function-local variables to be unique for
different threads in the later applied analysis, e.g., the identifier f ::x is distinct
from f ′::x. An analysis using the identifier does not even have to know whether
the function is cloned and can simply assume uniqueness of identifiers for all
variables.

4.2 Deadlock Detection

A deadlock [17] is defined as an abstract state where two (or more) competing
actions wait for each other to finish, and thus neither ever does. CPAchecker
allows the user to define the goal of an analysis by giving a specification in form

D. Beyer and K. Friedberger

56



of an automaton. Detecting deadlocks in the program can be done by giving an
observer automaton that monitors the abstract states of the ThreadingCPA and
reports deadlocks. This approach is independent of any further analysis and can
be combined with, e.g., value analysis or BDD analysis.

4.3 Mutex Locks

Mutex locks are commonly used to synchronize threads, e.g., to manage access
to shared memory. In our implementation, mutex locks are stored as part of the
abstract state of the ThreadingCPA. If a mutex lock is requested along a CFA
edge, but not available in the preceding abstract state, the transfer relation does
not yield a successive abstract state for the CFA edge.

Additionally, we use mutex locks for more use cases: We simulate atomic
sequences of statements and some aspects of partial order reduction as mutex
locks in the ThreadingCPA. Entering an atomic sequence requires an atomic
mutex lock, which is released after leaving the atomic sequence. Consecutive CFA
edges containing only thread-local operations (see Section 3.3) are modeled and
analyzed as atomic sequence.

5 Evaluation

In this section we evaluate different configurations of the ThreadingCPA and
compare it with other state-of-the-art tools. The evaluation is performed on
machines with a 2.6GHz Intel Xeon E5-2650 v2 CPU running Ubuntu 16.04
(Linux 4.4.0). Each single verification run is limited to 15 min of run time and
15 GB of memory. The 1 016 benchmark tasks are taken from the category of
multi-threaded programs at SV-COMP’16 3. The tasks are C programs, where
reaching a specific function call is considered as property violation. We use
CPAchecker 4 1.6.1 in revision 23 011.

5.1 Optimization Steps

First, we show the effect of applying each optimization step from Section 3
successively, i.e., on top of the previous optimization. Starting with a plain
(non-optimized) configuration of the ThreadingCPA combined with the value
analysis, we step-wise apply optimization in form of

– reached-set partitioning (see Section 3.1) based on the abstract states,
– waitlist ordering (see Section 3.2) based on the number of threads, and
– POR (see Section 3.3) based on local-scope and global statements.

The optimization steps are independent of the value analysis and can also
be applied to any other analysis like BDD analysis and interval analysis, where
3 https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp16
4 https://cpachecker.sosy-lab.org/
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Fig. 4: Quantile plot for different con-
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Fig. 5: Quantile plot for different ab-
stract domains using the Thread-
ingCPA within CPAchecker

the same benefit will be visible. Figure 4 shows a quantile plot containing the
run time of correctly solved verification tasks. The evaluation shows that the
verification process benefits from each of the optimization steps. For small tasks
that can be verified within a few second, e.g., because of only a few thread
interleavings in the program, the benefit of optimization is small. For tasks that
need more run time the benefit becomes visible.

We noticed that the heuristic of ordering the waiting abstract states is
beneficial in two ways: first, some property violations are found earlier (some
property violations need only a small number of interleavings); second, some
unsupported operations (like assigning several thread instances to the same
thread identifier) are reached earlier and the analysis can abort immediately
without wasting time.

Compared to the plain value analysis, partitioning the reached set improves
the performance and reduces the run time of the analysis by more than an order of
magnitude. Additionally changing the waitlist order improves run time in several
cases, mostly for tasks with a property violation. However, in our benchmark
this optimization step does not lead to more correctly solved tasks. POR causes
a lower number of explored abstract states, and thus the performance increases.

5.2 Abstract Domains

Second, we combine the ThreadingCPA with different analyses, such as value
analysis, interval analysis, and BDD analysis, which are already implemented
in the CPAchecker framework and are normally used for the analysis of single-
threaded programs. We only evaluate the optimized version of each combination.
The analyses could also be combined with CEGAR [7], however the current
benchmark does not benefit from it, and thus we just execute a reachability
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algorithm to verify the specification. We show that we can verify the majority
of benchmark programs and discuss strengths and weaknesses of the analyses.
As all compared analyses use the same framework (parser, algorithm, ...), we
expect our evaluation to be fair for all implemented approaches and allow a
precise comparison. Figure 5 shows the quantile plot of correct results for the
combinations of the ThreadingCPA with other analyses.

The BDD analysis is optimized for BFS in the reachability algorithm, whereas
value analysis and interval analysis use DFS as basic order for the list of waiting
abstract states during the exploration algorithm (see Section 3.2). Thus, the
state-space exploration traverses program locations and thread interleavings in
another order and finds the corresponding abstract states in a different order,
too. Depending on the verification task, this can result in an in- or decreased
performance compared to the value analysis.
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Fig. 6: Quantile plot for comparison of
other verifiers with support for multi-
threaded programs

5.3 Other Tools

Third, we compare the (optimized)
value analysis with two other state-
of-the-art verification tools, namely
CBMC 5 and VVT 6. Both tools are ex-
ecuted as in the SV-COMP’16 and are
chosen, because they do not apply spe-
cial approaches like sequentialisation,
but rely on a similar state-space ex-
ploration technique as our approach in
CPAchecker. Figure 6 shows the quan-
tile plot of correct results for CBMC,
VVT, and CPAchecker (using the op-
timized value analysis). The Thread-
ingCPA (combined with value analy-
sis) is competitive with the other tools.
The plot for CPAchecker matches the
trend of the other tools with only
some differences. At the left side of
the plot the initial start-up time of a
few seconds for CPAchecker is visible,
whereas other tools already solve some
of the given instance within this time.
Due to the missing support for pointer aliasing and array computations in the
value analysis as well as due to our simple kind of POR, CPAchecker can not
solve as many verification tasks as other tools within the time limit.

5 http://www.cprover.org/cbmc/ 6 https://vvt.forsyte.at/

A Light-Weight Approach for Verifying Multi-Threaded Programs

59



6 Conclusion

This paper presents a basic approach to support the analysis of multi-threaded
programs in CPAchecker. We formally defined a new ThreadingCPA in the
framework and demonstrated that several core components can be reused. Re-
using existing analyses is possible without any further overhead. Due to our
simple approach, there are a few limitations that have to be considered when
verifying multi-threaded programs with CPAchecker. Our approach for partial
order reduction is simple and can be extended with more advanced techniques to
further reduce the number of explored abstract states. The maximum number
of threads is bounded, because of possible conflicts in function names. To avoid
naming conflicts, we clone each function’s CFA several times before starting the
analysis. The number of clones cannot be changed afterwards. If we run out of
clones during the analysis and would need more due to a naming conflict, we
abort the analysis and report an insufficient number of threads.

As the ThreadingCPA identifies each thread only by the variable it is assigned
to, we currently can not analyze more complex thread management such as
pointer aliasing for the thread identifier or more complex locking mechanisms.
Our framework already contains a mechanism for exchanging information between
abstract states on a state-level during the analysis. The analysis of multi-threaded
programs could be extended to exchange information about thread management
with another analysis capable of such data, such that we could analyze more
difficult thread management with the ThreadingCPA.

Possible ideas for optimization have been implemented and evaluated. The
evaluation shows that the results of different analyses based on the ThreadingCPA
are competitive with other state-of-the-art tools.
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Abstract. Abstract. We show that it is possible to use
Bondy-Chvátal closure to design an FPT algorithm that
decides whether or not it is possible to cover vertices of
an input graph by at most k vertex disjoint paths in the
complement of the input graph.
More precisely, we show that if a graph has tree-width at
most w and its complement is closed under Bondy-Chvátal
closure, then it is possible to bound neighborhood diversity
of the complement by a function of w only.
A simpler proof where tree-depth is used instead of tree-
width is also presented.

1 Introduction

Graph Hamiltonian properties are studied especially in connection with graph
connectivity properties. A graph is called Hamiltonian if there is a path passing
through all its vertices in that graph. In this work we are interested in sparse
graph setting for which this question was already solved e.g. using the famous
theorem of Courcelle [4]. It is possible to express the Hamiltonian property by
an MSO2 formula and thus resolve the question by an FPT algorithm. For a
graph G and a positive integer k we say that G is k-path coverable if there exists
a collection of at most k vertex disjoint paths in G such that the vertices of G are
the union of vertices of all paths in the collection (that is, each vertex belongs
to exactly one path in the collection). We give a simple, but interesting, twist
to the question to rise a new problem:
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k-Anti-Path Cover
Input: A graph G and positive integer k.
Question: Is the complement of graph G k-path coverable?

In this notation Hamiltonian Anti-Path problem is exactly the 1-Anti-
Path Cover problem. It is not hard to see that we may focus on solving the
Hamiltonian Anti-Path as the k-Anti-Path Cover problem is reducible to
the Hamiltonian Anti-Path by addition of k isolated vertices (apex vertices
in the complement graph). Note that this does not affect tree-width nor tree-
depth. Indeed, for unrestricted graphs this question is solved on complement of
the graph. However, this is not possible if input graphs are restricted so that
some specified parameter is bounded. Two interesting examples are tree-width
and tree-depth. Note that tree-width of a complement of a graph cannot be
bounded by a function of the tree-width of the graph. On the contrary, there
are graph parameters in whose this question was already solved, as these graph
parameters are (for each constant) closed under taking complements – neighbor-
hood diversity and modular width, to name just a few. On both these parameters
k-Path Cover was one of the first considered problems which was showed to
be in the FPT class [6], [8] respectively.

There is a strong connection between the L(2, 1)-labeling problem and
Hamiltonian Anti-Path. L(2, 1)-labeling is a labeling of vertices of a graph G
so that labels of vertices in distance 1 differ by at least 2, while labels of vertices
in distance 2 differ by at least 1. The labels are taken from set {0, . . . , λ} and λ is
called a span. It not hard to see that a graph G with an apex vertex added admits
L(2, 1)-labeling with span λ = n if and only if G has Hamiltonian Anti-Path [2].

Our Contribution

Theorem 1. Let G be a graph of tree-width at most w. The problem of k-Anti-
Path Cover admits an FPT algorithm parameterized by tree-width.

The proof uses the famous closure theorem of Bondy and Chvátal. Most no-
tably we prove the following theorem from which we can derive the previous
theorem using e.g. known FPT algorithm of Lampis [8]. This exploit an unex-
pected relation between tree-width and neighborhood diversity. Thus, it natu-
rally rises many questions – whether similar approach is admissible for other
problems besides k-Anti-Path Cover problem.

Theorem 2. Let G be a graph of tree-width w and further complement G closed
under Bondy-Chvátal closure. It follows that neighborhood diversity of G is boun-
ded by 2k + k where k = 2(w2 + w).

Furthermore, we give a natural specializations of the theorems above in Sec-
tion 3. The purpose of Section 3 is twofold – first as tree-depth is more restrictive
parameter than tree-width the proof is simpler and second, the analysis of a par-
ticular application of Bondy-Chvátal theorem gives more light on the structure
of the complement of a graph G that is closed under this closure operator.
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2 Preliminaries

One of the basic graph operations is taking the complement of a graph. A com-
plement of a graph G = (V,E) is denoted by G and it is the graph (V,

(
V
2

)
\E).

Throughout the paper we denote by n the number of vertices in the input
graph. By the distance between two vertices u, v we mean the length of the
shortest path between them in the assumed graph G. We denote the distance
by dG(u, v) and omit the subscript if the graph is clear from the context.
We extend the notion to sets of vertices in a straightforward manner, that is

dG(U,W ) = min{dG(u,w):u ∈ U, w ∈ W}. For further graph related notation
we refer reader to the monograph by Diestel [5].

In our approach we repeatedly use the closure theorem of Bondy and Chvátal
to increase the number of edges in the complement of a graph (i.e. to reduce the
number of edges in the given graph). Note that this operation does not increase
the tree-width of the input graph.

Theorem 3 (Bondy-Chvátal closure [3]). Let G = (V,E) be a graph of or-
der |V | ≥ 3 and suppose that u and v are distinct non-adjacent vertices such
that deg(u) + deg(v) ≥ |V |. Now G has a Hamiltonian path if and only if
(V,E ∪ {u, v}) has a Hamiltonian path.

The notion of tree-width was introduced by Bertelé and Brioshi [1].

Definition 1 (Tree decomposition). A tree decomposition of a graph G is
a pair (T,X), where T = (I, F ) is a tree, and X = {Xi | i ∈ I} is a family of
subsets of V (G) (called bags) such that:

– the union of all Xi, i ∈ I equals V ,
– for all edges {v, w} ∈ E, there exists i ∈ I, such that v, w ∈ Xi and
– for all v ∈ V the set of nodes {i ∈ I | v ∈ Xi} forms a subtree of T .

The width of the tree decomposition is max(|Xi| − 1). The tree-width of a
graph tw (G) is the minimum width over all possible tree decompositions of
the graph G.

Proposition 1 ([7]). Let G be a graph with n vertices. There exists an optimal
tree decomposition with O(n) bags. Moreover, there is an FPT algorithm that
finds such a decomposition.

Definition 2 (Tree-depth [9]). The closure Clos(F ) of a forest F is the graph
obtained from F by making every vertex adjacent to all of its ancestors. The tree-
depth, denoted as td(G), of a graph G is one more than the minimum height of
a rooted forest F such that G ⊆ Clos(F ).

The last graph parameter needed in this work is the neighborhood diversity
introduced by Lampis [8].

Definition 3 (Neighborhood diversity). The neighborhood diversity of a
graph G is denoted by nd (G) and it is the minimum size of a partition of vertices
into classes such that all vertices in the same class have the same neighborhood,
i.e. N(v) \ {v′} = N(v′) \ {v}, whenever v, v′ are in the same class.
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It can be easily verified that every class of a neighborhood diversity partition is
either a clique or an independent set. Moreover, for every two distinct classes
C,C ′, either every vertex in C is adjacent to every vertex in C ′, or there is no
edge between C and C ′. If classes C and C ′ are connected by edges, we refer to
such classes as adjacent.

It is possible to find the optimal neighborhood diversity decomposition of a
given graph in polynomial time [8].

3 Tree-depth

We show that using the Bondy-Chvátal closure it is possible on input G and k
either decide that G is k-path coverable or return graph H that is equivalent (for
the k-path coverability) to graph G with nd(H) ≤ 22d + 2d. Furthermore, it is
possible to use the FPT algorithm of Lampis [8] on the resulting graph to decide
whether it is k-path coverable or not. This in turn gives an FPT algorithm for
k-Anti-Path Cover with respect to tree-depth.

Applying Bondy-Chvátal. We will apply the Bondy-Chvátal closure from the
leaves of a tree-depth decomposition of the input graph G in order to reduce
the number of edges in G and either resolve the given question (in the case G
becomes an edgeless graph) or impose a structure on the complement of G (after
the removal of several edges). Note that every leaf of the decomposition has at
most td(G) neighbors and that the set of leaves spans an edgeless subgraph of G
(a clique in G). We apply the Bondy-Chvátal closure to a vertex v and all leaves
beneath v (denote these as L) in the tree-depth decomposition tree. We choose
v such that the distance between L and v is 1. We denote ` the number of nodes,
that is ` = |L|. We denote a height of vertex v in the tree-depth decomposition
as h(v) and define it as follows. Height of a root is set to 0 and for a vertex
v let u denote the closest ancestor of v in the tree-depth decomposition we set
h(v) = h(u) + 1. Observe that it is possible to add all edges between L and v
to G if

n− h(v)− 1 + n− h(v)− ` ≥ n.
That is equivalent to n > 2h(v) + `.

Lemma 1. Denote H the graph after application of the closure. We claim that
nd(H) ≤ 22d + 2d, where d = td(G).

Proof. It follows that if the application process stops, then n ≤ 2h(v) + ` must
hold for all nonleaf vertices. Take h = max{h(v): v nonleaf}. Note that all (ac-
tual) leaves of H form a clique in H and thus, H is a graph on n ≤ 2h + `
vertices with K` as a subgraph. This in turn yields that the distance to clique
(the number of vertices to delete such that the resulting graph is a clique) of H
is at most 2h. Thus, the neighborhood diversity of H is at most 22h + 2h. This
follows from the fact that there are at most 22d different neighborhoods from
the point of view of a clique vertex. This together with trivial fact h ≤ td(G)
completes the proof.
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Lemma 1 yield the following corollary when known algorithms for finding
Hamiltonian path are applied to the resulting graph H.

Theorem 4. The k-Anti-Path Cover problem admits an FPT algorithm with
respect to parameterization by the tree-depth of the input graph. ut

4 Tree-width

In this section we restate and prove Theorem 2.

Theorem 5 (Restate Theorem 2). Let G be a graph of tree-width w and fur-
ther complement G closed under Bondy-Chvátal closure. It follows that neigh-
borhood diversity of G is bounded by 2k + k where k = 2(w2 + w).

Proof. We will prove the graph G has a clique C of size at least n − 2w2 − w.
Thus, the graph G has at most 2(w2+w) vertices which are not in C. The bound
of nd(G) follows.

Since G is closed under Bondy-Chvátal closure, for every edge {u, v} = e ∈
E(G) holds that degG(u) + degG(v) ≥ n. Otherwise, it would holds degG(u) +

degG(v) ≥ n and we could add the edge e into E(G). Thus, for every edge e ∈
E(G) there exists a vertex v ∈ e such that degG(v) ≥ n

2 . Let f : E(G)→ V (G)
be a function such that for every v = f(e) holds that v ∈ e and degG(v) ≥ n

2 .
Let V1 = {f(e)|e ∈ E(G)}. Note that V1 is a vertex cover of the graph G.
Thus, if we remove the set V1 from the graph G we obtain a clique. Moreover,
V1 ⊆ V2 = {v ∈ V (G)|degG(v) ≥ n

2 }.
It remains to prove that |V2| ≤ 2(w2 + w). Let T = (T,X) be a tree decom-

position of G such that width of T is w and T has n nodes. Let p be a number
of all ordered pairs (v,Xi) where v ∈ V (G), Xi ∈ X and v ∈ Xi. We use double
counting for p. Since T has at most n nodes and all bags in X contains at most
w + 1 vertices of G, we have

p ≤ n(w + 1). (1)

Let v ∈ V2 and Ev = {e ∈ E(G)|v ∈ e}. Note that |Ev| = degG(v) ≥ n
2 .

Every edge of G has to be in some bag in X. However, there can be only w edges
from Ev in one bag in X. Thus, edges from Ev and also the vertex v have to be
in at least n

2w bags from X. Therefore, we have lower bound

|V2|
n

2w
≤ p. (2)

When we join Inequality 1 and Inequality 2 we get the right upper bound for
V1 and V2

|V1| ≤ |V2| ≤ 2(w2 + w).
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5 Conclusions

We have proven that even through apparently there is no structure in terms of
neighborhood diversity on the complements of sparse graphs (having bounded
tree-width or tree-depth), the structure after exhaustive application of Bondy-
Chvátal closure can be exploited – the complement has bounded neighborhood
diversity.

We would like to ask several vague questions here.

– Is it possible to use other graph closure operators to show a connection
between tree-width and neighborhood diversity or modular width?

– Is it possible to exhibit closer connection between tree-width and modular
width trough graph complements?

– Does any other non-MSO2 problem besides k-Anti-Path Cover admit an
FPT algorithm on a graph with bounded tree-width?

– When one assumes parameterization by the tree-width of an input graph it is
convenient to approach the problem by the famous theorem of Courcelle [4].
Is it possible to extend the theorem for MSO2 for the complementary setting
– i.e. to allow quantification over sets of non-edges?
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Abstract. Hades1 is a fully automated verification tool for pipeline-
based microprocessors that aims at flaws caused by improperly handled
data hazards. It focuses on single-pipeline microprocessors designed at
the register transfer level (RTL) and deals with read-after-write, write-
after-write, and write-after-read hazards. Hades combines several tech-
niques, including data-flow analysis, error pattern matching, SMT solv-
ing, and abstract regular model checking. It has been successfully tested
on several microprocessors for embedded applications.

1 Introduction

Implementation of pipeline-based execution of instructions in purpose-specific
microprocessors, often used, e.g., in embedded applications, is an error-prone
task, which implies a need of proper verification of the resulting designs. Formal
verification of such microprocessors—despite they are much simpler than com-
mon processors for mainstream computing—is a very challenging task. One way
how to deal with it is to develop a set of verification techniques specialised in
checking absence of a certain kind of errors in such microprocessors. Here, the
main idea is that, this way, a high degree of automation and scalability can be
achieved since only parts of a design related to a specific error are to be investi-
gated. The above idea has been followed, e.g., in the works [6,7] that proposed
fully automated approaches for (1) checking correctness of individual execution
of processor instructions and (2) for verifying absence of read-after-write (RAW)
hazards when the instructions are pipelined. In [8], the approach was extended
by covering write-after-write (WAW) and write-after-read (WAR) hazards.

To be more precise, an RAW hazard arises when an instruction writes to a
storage that some later instruction reads, but it is possible for the later instruc-
tion to read an old value being rewritten by the earlier instruction. A WAW
hazard refers to a situation when an instruction writes to a storage and rewrites
a result stored by some later instruction which already finished its execution.
A WAR hazard arises when a later instruction write to a destination before it
is read by the previous instruction. There are also non-data hazards. Structural
hazards deal with sharing resources by instructions in a pipeline. Control hazards

1 www.fit.vutbr.cz/research/groups/verifit/tools/hades/
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arise when an instruction is executed improperly due to an unfinished update of
a program counter. This paper, however, concentrates on data hazards only.

In particular, the paper presents the Hades tool, developed by VeriFIT re-
search group at FIT BUT, that implements a slightly improved version of the
approaches proposed in [7,8]. Namely, after briefly discussing related works, we
specify how the input of Hades looks like, we describe its architecture and
implementation, and provide experimental results on a larger set of micropro-
cessors than in [7,8]. Moreover, we include a more detailed discussion of the
needed verification time and its decomposition to the computing times needed
by the different analysis phases implemented in Hades. We close the paper by
a discussion of possible future improvements of the Hades tool.

Related Work. Verifying that there are no hazards in a pipelined microprocessor
is quite crucial. Hence, it has become a native part of checking conformance
between an RTL design and a formally encoded description of an instruction
set architecture (ISA), and many approaches with formal roots have been pro-
posed for this purpose. Among them, one can find, e.g., the following approaches
[5,13,1,14,15,20,12]. However, these methods typically require a significant man-
ual user intervention—either in a form of specifying the consistent state of the
microprocessor or defining predicates describing pipeline behaviour. Compared
with such approaches, Hades does not aim at full conformance checking of RTL
and ISA implementations. Instead, it addresses one specific property—namely,
absence of problems caused by pipeline hazards. On the other hand, Hades is al-
most fully automated—the user is required to identify the architectural resources
(such as registers and memory ports) and the program counter only.

2 Input Models

Hades focuses on microprocessors with a single pipeline and in-order execution.
The tool expects storages (registers and memories) to have a unit write and zero
read delay. Multicycle delay storages can be easily simulated by a chain of unit
storages. The tool also assumes that pipeline internal registers which carry data
interchanged between programmer visible storages are controlled by stall and
clear signals.

The tool expects the processor under verification to be described by a so-
called processor structure graph (PSG in short) which represents the internal
structure of the processor. A PSG is an oriented graph that consists of ver-
tices (storages or boolean circuits) and edges (control and data connections). An
example of a simple PSG is depicted in Figure 1. It shows a part of a simple mi-
croprocessor with an accumulator architecture with two architectural registers:
X (a memory index register) and A (an accumulator). For the sake of brevity, the
PSG does not exhibit control connections of pipeline registers. In the CPU, an
instruction fetched from the memory is stored into the storage id ir represent-
ing the instruction register. The decoder determines the type of the operation of
arithmetic logic unit and identifies its destination by activating the appropriate
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Fig. 1: A processor structure graph of a part of a CPU with an accumulator
architecture.

enable connection (en) of the X or A register. An early auto-increment of reg-
ister X can be performed in stage 3. Such a feature allows the CPU to execute
sequences of instructions working with juxtaposed data in the memory without
a penalty (brought, e.g., by unnecessary stalls of the pipeline) which would be
present if the update of X was done in a later stage.

A design of a processor on the register transfer level (RTL) written in a
common hardware design language like VHDL or Verilog can be easily converted
into a PSG.

3 The Verification Approach of Hades

The verification approach of Hades was proposed in [7,8]. It leverages the cur-
rent advances in SMT solvers for bit-vector logic and in formal verification of
systems with a parameterized number of processes—for short, referred to as
parameterized systems (PSs) below. The main idea is to reduce the problem of
finding hazards that may arise when executing an in advance unknown number of
in advance unknown instructions2 to a parametric verification problem where the
successive instructions are modelled by processes, which gradually pass through
the processor. In particular, it turns out that one can use the common notion
of PSs operating on a linear topology where the processes (i.e., instructions be-
ing executed) may perform local transitions or universally/existentially guarded
global transitions [9,18,2].

More precisely, the approach consists of the following steps: (1) a data-flow
analysis intended to distinguish particular stages of the pipeline, (2) a con-
sistency check of a correct implementation of the particular pipeline stages,

2 Note that one cannot simply restrict the checking to a number of instructions given
by the number of pipeline stages since the processor can get to different internal
states after having processed some number of instructions of some kind.
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(3) a static analysis identifying constraints over data-paths of instructions that
can potentially cause data hazards, (4) generation of a PS modelling mutual
interaction between potentially conflicting instructions, and (5) an analysis of
the constructed parameterized system.

Identification of Pipeline Stages. A simple data flow analysis is used to derive
the number of pipeline stages implemented in a given processor and to assign
storages and logic functions into the pipeline stages. A pipeline stage is defined
as a sub-graph of the PSG responsible for executing a single-cycle step of an
instruction. The pipeline stage of a PSG vertex (representing some storage or
function) is given by the minimum number of cycles needed to propagate data
from the input of the program counter (assumed to be in a fictive stage 0) to
the output of the given vertex.

Consistency Checking. The second step of the method is consistency checking
that checks whether the flow logic assures a correct in-order execution of all
instructions through all the identified pipeline stages. This step checks whether
the flow logic obeys a set of rules that express how the control connections (i.e.,
enable, stall, and clear signals) of storages in adjacent pipeline stages should be
set. In short, the rules require that an instruction carried by a pipeline stage
cannot be fragmented, duplicated, or lost. In particular, a strengthened variant
of the rules proposed in [16] is used.

Static Detection of Potential Hazards. Next, a static hazard analysis over the
PSG with annotated pipeline stages is performed to identify a finite set of so-
called hazard cases. Each hazard case describes one possible source of a hazard.
A hazard case consists of a programmer visible source storage (i.e., a register
or a writing port of the memory), target storage, reading and writing stages,
and an influence path describing how data propagate between the stages. Since
the definition of a hazard case speaks about storages, their access stages, and
the path along which the problematic data is transferred, it is not related to
a single instruction only but to an entire class of instructions.

Generation of PSs Modelling the Possible Hazards. In this stage, a PS for each
identified hazard case is generated. The main component of the PS is a finite
automaton whose instances represent instructions passing the pipeline. A state
of the automaton identifies the class of instructions that the particular instance
represents3, the execution stage into which the instruction got, and the condi-
tions that must hold for the instruction to proceed such that a flow of data along
the path associated with the given hazard case is caused. The transitions of the
automata can be guarded by referring to the states of the automata representing
instructions that surround the given instruction in the pipeline. Their generation
is pruned by checking whether the conditions behind the states of the involved

3 Three classes are distinguished—write instructions, read instructions, and other in-
structions.
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Fig. 2: Hades architecture.

automata do not exclude each other. Further, regular sets of initial and bad con-
figurations are generated. Initial configurations represent simply an arbitrary
sequence of instructions waiting for entry into the pipeline. Bad configurations
are specified separately for the different types of hazards considered—e.g., for
RAW hazards, they say that a later instruction finished reading before an earlier
instruction committed writing.

Analysis of the Generated PS. As the last step, it is verified that the bad con-
figurations are not reachable from the initial configurations in the generated PS.
For that, abstract regular model checking can be used [4].

4 Hades Implementation

The Hades tool implements the above sketched approach and consists of several
components depicted in Figure 2. Hades reads in an RTL description of the
processor to be verified and converts it into its internal PSG representation.
Currently, Hades supports the RTL format of CodAl which is an architectural
description language for processor design [10]. For other RTL languages like
VHDL and Verilog where architectural storages are not explicitly identified, a list
of architectural storages with an explicit identification of the program counter
must be provided.

The input PSG is normalized and simplified (conditional branching is re-
placed by multiplexors, value propagation is applied, redundant nodes and edges
are removed, etc.). For that, the RTL query engine of Hades, which allows one
to search for data-paths and substitute parts of the RTL design described by
a PSG, is used. The engine uses a LISP-like syntax both for queries and their
output, and it can handle basic RTL constructs like signals, registers, logic gates,
as well as memory and its ports.

Subsequently, pipeline stages are identified by a simple data-flow analysis.
Intuitively, the analysis propagates so far computed stages forward through the
PSG, always taking the minimum of values incoming to a vertex and adding one
whenever a storage other than a read port (which has a zero delay) is passed.
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Table 1: Experimental results.
Processor / Simpl. Data Flow Consistency Parameterized System Total Hazard

variant Time [s] Analysis [s] Checking [s] Generation and Verification [s] Time [s] Cases [#]
rtl smt core rtl smt armc core

TinyCPU S 0.05 0.01 <0.01 0.25 0.49 0.01 0.38 5.44 6.71 13.34 5
SA 0.06 0.02 <0.01 0.33 0.60 0.02 1.00 11.58 20.84 34.45 8
B 0.05 0.01 <0.01 0.25 0.44 0.01 0.38 5.08 5.95 12.17 5
BA 0.07 0.02 <0.01 0.33 0.63 0.03 1.03 11.02 18.28 31.41 8
SF 0.06 0.02 <0.01 0.30 0.51 0.02 0.77 10.82 13.89 26.39 11
SFA 0.07 0.02 <0.01 0.34 0.68 0.04 1.88 20.42 43.09 66.54 18

SPP8 S 0.27 0.04 0.01 0.43 0.85 0.05 2.02 20.81 36.24 60.72 27
B 0.25 0.03 0.01 0.40 0.82 0.07 2.16 20.35 43.19 67.28 27

SPP16 S 0.27 0.05 0.01 0.44 0.90 0.04 1.90 19.99 36.33 59.93 27
B 0.30 0.05 0.01 0.43 0.88 0.07 2.16 19.75 42.29 65.94 27

Codea2 SF 0.81 0.13 0.01 0.59 1.04 0.94 32.91 224.73 527.34 788.49 239
CompAcc SFA 0.27 0.04 0.01 0.54 1.06 0.11 5.60 65.83 98.05 171.87 38

BFA 0.28 0.05 0.01 0.55 1.04 0.28 7.74 66.03 158.56 234.94 53
DLX5 S 0.47 0.08 0.01 1.09 2.23 0.22 8.96 140.40 205.69 359.15 25

SA 0.54 0.10 0.01 1.12 2.44 0.37 17.54 250.78 460.75 733.65 59
B 0.62 0.12 0.01 1.07 2.40 0.33 9.47 138.55 316.08 468.65 25
BA 0.65 0.12 0.01 1.15 2.69 0.48 19.28 247.98 745.16 1017.52 59

S Stalling Logic B Bypassing Logic F Flag Register(s) A Auto-increment Logic

Next, instances of the consistency rules for the particular design are derived
using RTL query engine. The rules are checked using an SMT solver for bit-
vector logic. Hades is compatible with all SMT solvers accepting SMT2 formula
description. In particular, for the below experiments, Z3 [17] was used.

Further, given a PSG with annotated stages, the Hades core repeatedly uti-
lizes the RTL query engine (written in C++) and the SMT solver to extract
potential hazard cases and to generate the appropriate PSs for them. The gen-
erated PSs are then checked using the abstract regular model checker of [3]
(implemented in OCaml over the Timbuk tree automata library [11], however,
tree automata degenerated to word automata are used only).

Note that the different hazard cases are are independent, and hence, in the
future, the generation of the PSs and their verification can be run in parallel.

5 Experimental Evaluation

We have tested Hades on five processors: TinyCPU is a small 8-bit processor,
mainly used for testing new verification methods. SPP8 is an 8-bit ipcore with
3 pipeline stages, 16 general-purpose registers, and a RISC instruction set with
9 instructions. SPP16 is a 16-bit variant of SPP8 with a more complex mem-
ory model. Codea2 is a 16-bit processor for signal processing applications. It is
equipped with 16 general-purpose registers, 15 special registers, a flag register,
and an instruction set including 41 instructions where each may use up to 4
available addressing modes. CompAcc is an 8-bit processor based on an accumu-
lator architecture. Finally, DLX5 is a 5-staged 32-bit processor able to execute
a subset of the instruction set of the DLX architecture [19] (with no floating
point support).

Compared with [6,7,8], we enriched the number of variants for the above
introduced processors, which gave us 17 unique test cases in total. The variants
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of the particular processors differ in the following aspects: (i) the way how data
hazards are avoided (pipeline stalling and clearing, data bypassing), (ii) the
presence of flag / status registers, and (iii) utilization of so-called auto-increment
(AI) logic. The AI logic is a feature allowing for an early incrementation4 of the
value of a register for memory addressing just before (pre-increment) or right
after (post-increment) it is read. The AI feature usually brings a more efficient
execution of sequences of instructions accessing the processor’s memory (e.g.,
computation upon long arrays in cyber-security CPUs), but it also introduces
potential WAW and WAR hazards that must be handled properly.

Besides the modifications in our test cases, we improved the Hades tool as
well. This includes an addition of dynamic programming techniques (e.g., paths
found in PSG are hashed and reused) and a faster pipe-based communication
(instead of previously used file-based) between the Hades core and the RTL
query engine.

We conducted a series of experiments on a PC with Intel Core i7-3770K
@ 3.50GHz and 16 GB RAM with results shown in Table 1. The first columns
give the verified processor, its variant, the time needed for the PSG simplification
and its data flow analysis. The next columns give the duration of the consistency
checking and the time spent by verification of the PSs that are created for each
hazard case. The times are split to the times consumed by the different parts of
the Hades architecture.

The following column gives the overall verification time, which remains in
the order of minutes even for complex designs. Moreover, Hades also scales well
with the growing size of the processor data-path as can be seen by comparing
the times obtained for SPP8 and SPP16. It should be noted that the amount
of time consumed by the tool’s core can be reduced by using a direct API of
the SMT solver used instead of the current implementation that relies on ex-
porting (potentially large) formulas in the smt2 file format. (On the other hand,
the current implementation does not depend on any particular SMT solver.)
Finally, the last column represents the number of hazard cases that had to be
generated and checked. This number differs from the one computed in [7,8] due
to Hades newly does not include hazard cases on the program counter among
data hazards. These cases will be treated in separate control hazard detection
phase, which is currently under implementation. Note that each hazard case rep-
resents a separate task so the part of generation and verification of PSs can be
parallelized in the future.

During the experiments, we identified a flaw in a RAW hazard resolution
when accessing the data memory in a development version of the SPP8 proces-
sor.

6 Conclusions and Future Work

We have presented the main ideas, architecture, and evaluation of Hades—a
tool for fully-automated discovery of data hazards in pipelined microprocessors.

4 The incrementation typically takes place in an execution stage of the processor’s
pipeline.
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In the future, we plan to extend Hades with methods for verification of other
processor features, such as control hazards. We also plan to parallize some parts
of Hades and extend it with a compiler from VHDL and Verilog IP cores to the
Hades input format.
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project 14-11384S, the IT4IXS: IT4Innovations Excellence in Science project
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Abstract. This paper builds on our contribution [4] which studied mod-
elling of the conjunction in human language. We have discussed three dif-
ferent ways of constructing a conjunction. We have dealt with generated
t-norms, generated means and Choquet integral.
In this paper we construct the residual operators based on the above
conjunctions. The only operator based on a t-norm is an implication.
We show that this implication belongs to the class of generated impli-
cations IgN which was introduced in [8] and studied in [3]. We study its
properties. Moreover, we investigate this class of generated implications.
Some important properties, including relations between some classes of
implications, are given.

1 Introduction

In [4], we studied modelling of the conjunction in human language. We have ex-
perimentally rated simple statements and their conjunctions. Then we have tried,
on the basis of measured data, to find a suitable function, which corresponds to
human conjunction. We have discussed three different ways of constructing a
conjunction. We have dealt with generated t-norms, generated means and Cho-
quet integral. Now we are interested in a construction of the implications based
on the above conjuctions. One of the possible ways to construct the implications
is the following transformation

∀x, y, u ∈ [0, 1];C(x, u) ≤ y ⇐⇒ RC(x, y) ≥ u.

This transformation produces the residual operator RC based on the given con-
junction C. For some conjunctions we can get, in this way, a residual operator
which is an implication.

For better understanding we recall basic definitions and statements used in
the paper. We deal with multivalued (MV for short) logical connectives, which
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are monotone extensions of the classical connectives on the unit interval [0, 1].
We turn our attention to the conjunctions in MV-logic. Usually, the triangular
norms are used to interpret the conjunctions in MV-logic.

Definition 1. [7] A triangular norm (t-norm for short) is a binary operation
on the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1], such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:

– (T1) Commutativity
T (x, y) = T (y, x),

– (T2) Associativity

T (T (x, y), z) = T (x, T (y, z)) ,

– (T3) Monotonicity

T (x, y) ≤ T (x, z) whenever y ≤ z,

– (T4) Boundary Condition
T (x, 1) = x.

The four basic t-norms are:

– the minimum t-norm TM (x, y) = min{x, y},
– the product t-norm TP (x, y) = x · y,
– the  Lukasiewicz t-norm TL(x, y) = max{0, x+ y − 1},

– the drastic product TD(x, y) =

{
0 if max{x, y} < 1,

min{x, y} otherwise.

We deal only with such continuous t-norms, that are generated by a unary
function (the generator). One possibility is to generate by an additive generator,
which is a strictly decreasing function f from the unit interval [0, 1] to [0,+∞]
such that f(1) = 0 and f(x) + f(y) ∈ H(f) ∪ [f(0+),+∞] for all x, y ∈ [0, 1],
where H(f) is range of f . Then the generated t-norm is given as follows

T (x, y) = f (−1) (f(x) + f(y)) ,

where f (−1) : [0,+∞] → [0, 1] and f (−1)(y) = sup{x ∈ [0, 1] | f(x) > y}. Note,
that f (−1) is a pseudo-inverse, which is a monotone extension of the ordinary
inverse function. For an illustration, we give the following example of parametric
class of t-norms and their additive generators.

The family of Yager t-norms, introduced by Ronald R. Yager, is given for
0 ≤ p ≤ +∞ by

TY
p (x, y) =





TD(x, y) if p = 0,

TM (x, y) if p = +∞,
max

{
0, 1− ((1− x)p + (1− y)p)

1
p

}
if 0 < p < +∞.
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The additive generator of TY
p for 0 < p < +∞ is

fYp (x) = (1− x)p.

Because of associativity, we can extend t-norms to the n-variete case as:

x
(n)
T =

{
x if n = 1,

T (x, x
(n−1)
T ) if n > 1.

A t-norm T is called Archimedean if for each x, y in the open interval ]0, 1[

there is a natural number n such that x
(n)
T ≤ y. It is sufficient to investigate

Archimedean t-norms, because every non-Archimedean t-norm can be approxi-
mated arbitrarily well with Archimedean t-norms, [6, 5].

Remark 1. If T is a t-norm, then the dual function S : [0, 1]2 → [0, 1] defined by
S(x, y) = 1−T (1−x, 1−y) is called a t-conorm. Its neutral element is 0 instead
of 1, and all other conditions remain unchanged. Analogously to the case of t-
norms, some classes of t-conorms can be generated by additive generators. The
additive generator for a t-conorm is a strictly increasing function g from the unit
interval [0, 1] to [0,+∞] such that g(0) = 0 and g(x)+g(y) ∈ H(g)∪ [g(1−),+∞]
for all x, y ∈ [0, 1]. The generated t-conorm is given by

S(x, y) = g(−1) (g(x) + g(y)) ,

where g(−1)(y) = sup{x ∈ [0, 1] | g(x) < y}. Note that t-conorms are usually
used for modelling fuzzy disjunctions.

Now, we continue with definitions and properties of fuzzy negations.

Definition 2. (see e.g. in [2]) A function N : [0, 1] → [0, 1] is called a fuzzy
negation if, for each a, b ∈ [0, 1], it satisfies the following conditions

– (i) a < b⇒ N(b) ≤ N(a),
– (ii) N(0) = 1, N(1) = 0.

Remark 2. A dual negation Nd : [0, 1] → [0, 1] based on a negation N, is given
by Nd(x) = 1 − N(1 − x). A fuzzy negation N is called strict if N is strictly
decreasing and continuous for arbitrary x, y ∈ [0, 1]. In classical logic we have
that (A′)′ = A. In multivalued logic this equality is not satisfied for every
negation. The negations with this equality are called involutive negations. The
strict negation is strong if and only if it is involutive. The most important and
most widely used strong negation is the standard negation NS(x) = 1− x.

In the literature, one can find several different definitions of fuzzy implica-
tions. In this paper we will use the following one, which is equivalent to the
definition introduced by Fodor and Roubens in [2].

Definition 3. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies the following conditions:
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(I1) I is non-increasing in its first variable,
(I2) I is non-decreasing in its second variable,
(I3) I(1, 0) = 0, I(0, 0) = I(1, 1) = 1.

We recall definitions of some important properties of fuzzy implications which
we will investigate.

Definition 4. A fuzzy implication I : [0, 1]2 → [0, 1] satisfies:

(NP) the left neutrality property if

I(1, y) = y for all y ∈ [0, 1],

(EP) the exchange principle if

I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1],

(IP) the identity principle if

I(x, x) = 1 for all x ∈ [0, 1],

(OP) the ordering property if

x ≤ y ⇐⇒ I(x, y) = 1 for all x, y ∈ [0, 1],

(CP) the contrapositive symmetry with respect to a given fuzzy negation N if

I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1].

Definition 5. Let I : [0, 1]2 → [0, 1] be a fuzzy implication. The function NI

defined by NI(x) = I(x, 0) for all x ∈ [0, 1], is called the natural negation of I.

(S,N)-implications which are based on t-conorms and fuzzy negations form
one of the well-known classes of fuzzy implications.

Definition 6. A function I : [0, 1]2 → [0, 1] is called an (S,N)-implication if
there exist a t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

If N is a strong negation then I is called a strong implication.

The following characterization of (S,N)-implications is from [1].

Theorem 1. (Baczyński and Jayaram [1], Theorem 5.1) For a function I :
[0, 1]2 → [0, 1], the following statements are equivalent:

– I is an (S,N)-implication generated from some t-conorm and some contin-
uous (strict, strong) fuzzy negation N.

– I satisfies (I2), (EP), and NI is a continuous (strict, strong) fuzzy negation.
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Another way of extending the classical binary implication to the unit interval
[0, 1] is based on the residual operator with respect to a left-continuous triangular
norm T

IT (x, y) = max{z ∈ [0, 1] | T (x, z) ≤ y}.
Elements of this class are known as R-implications. The following characteriza-
tion of R-implications is from [2].

Theorem 2. (Fodor and Roubens [2], Theorem 1.14) For a function I : [0, 1]2 →
[0, 1], the following statements are equivalent:

– I is an R-implication based on some left-continuous t-norm T.
– I satisfies (I2), (OP), (EP), and I(x, .) is right-continuous for any x ∈ [0, 1].

At last we introduce a characterization of implications based on Φ-conjugate
from [1].

Definition 7. We denote by Φ the family of all increasing bijections on the unit
interval [0, 1]. We say that implications I1, I2 : [0, 1]2 → [0, 1] are Φ-conjugate if
there exists a bijection ϕ ∈ Φ such that I2 = (I1)ϕ, where

(I1)ϕ(x, y) = ϕ−1(I1(ϕ(x), ϕ(y))),

for all x, y ∈ [0, 1].

Theorem 3. (Baczyński and Jayaram [1], Theorem 2.4.20) Let I : [0, 1]2 →
[0, 1] be a function. Then I is a continuous function satisfying (OP), (EP), if
and only if, I is Φ-conjugate with the  Lukasiewicz implication.

It is well-known that it is possible to generate t-norms from one variable
functions. Therefore the question whether something similar is possible in the
case of fuzzy implications is very interesting. In [9] Yager introduced two new
classes of fuzzy implications: f -implications and g-implications where their gen-
erators f are continuous additive generators of continuous Archimedean t-norms
and generators g are continuous additive generators of continuous Archimedean
t-conorms.

In this paper we deal with some of less known classes of generated fuzzy
implications which were introduced in [8] and studied in [3].

The first class of generated implications is based on strictly increasing func-
tions g.

Theorem 4. [8] Let g : [0, 1] → [0,∞] be a strictly increasing function such
that g(0) = 0. Then the function Ig : [0, 1]2 → [0, 1] which is given by

Ig(x, y) = g(−1)(g(1− x) + g(y)), (1)

is a fuzzy implication.

The fuzzy implication Ig can be generalized. This generalization is based on
replacing the standard negation by an arbitrary one.
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Theorem 5. [8] Let g : [0, 1] → [0,∞] be a strictly increasing function such
that g(0) = 0 and N be a fuzzy negation. Then the function IgN

IgN (x, y) = g(−1)(g(N(x)) + g(y)), (2)

is a fuzzy implication.

2 The residual operators based on the considered
conjunctions

As mentioned in the first section, we have found residual operators of conjunc-
tions which were based on empirically measured data.

The first conjunction was the t-norm TY
2 which is given by

TY
2 (x, y) = max

{
0, 1−

(
(1− x)2 + (1− y)2

) 1
2

}
.

It is Yager’s t-norm with parameter p = 2. The corresponding residual operator
(Fig. 1a) is given by

ITY
2

(x, y) = 1− (max((1− y)2 − (1− x)2), 0)
1
2 . (3)

In general, residual implications which are based on Yager t-norms TY
p are given

by:

ITY
p

(x, y) = 1− (max((1− y)p − (1− x)p), 0)
1
p . (4)

Now, we will investigate properties of implications ITY
p

and their membership in
the classes of implications. We turn our attention to the class of Ig implications.
The boundary conditions for Ig implications are given by

Ig(x, 0) = g(−1) ◦ g(1− x) = 1− x,

Ig(1, y) = g(−1) ◦ g(y) = y.

On the other hand, residual implication ITY
p

satisfies the following equality

ITY
p

(x, 0) = 1− (max(1− (1− x)p), 0)
1
p = 1− (1− (1− x)p)

1
p .

Therefore the implication ITY
p

can not be expressed as Ig, but as IgN . The func-
tion

Np(x) = ITY
p

(x, 0) = 1− (1− (1− x)p)
1
p

is a negation (particularly, for p = 2 we get N2(x) = 1 −
√
x(2− x)) and since

IgN (x, 0) = g(−1)(g(N(x)), g(0)) = N(x), the implication ITY
p

is expressed by the

function IgN with negation N = Np.
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Furthermore, we consider the function gp(x) = 1− (1− x)p, where g−1p (x) =

1− (1− x)
1
p . Then the function I

gp
Np

is given by

I
gp
Np

(x, y) = g−1p (min(gp(Np(x)) + gp(y), gp(1)))

= g−1p (min((1− x)p + 1− (1− y)p, 1))

= 1− (1−min((1− x)p + 1− (1− y)p, 1))
1
p .

Since 1−min(1− x, 1− y) = max(x, y) we have

I
gp
Np

(x, y) = 1− (max((1− y)p − (1− x)p), 0)
1
p = ITY

p
(x, y).

Let p > 0. Directly from Definition 4 we get that the implications ITY
p

satisfy

properties (IP) and (NP). Since the implications ITY
p

are residual operators based

on the left-continuous t-norms TY
p , and due to Theorem 2, properties (EP) and

(OP) are satisfied for these implications. Additionally

ITY
p

(Np(y), Np(x)) = 1− (max(1− (1− x)p − (1− (1− y))p), 0)
1
p = ITY

p
(x, y),

which is the property (CP) with respect to the negations Np.
The next conjunction is a quasi-arithmetic mean M (for more details see [4]).

Its residual operator is given by formula

Mr(x, y) = sup{t ∈ [0, 1] | M(x, t) ≤ y} = sup

{
t ∈ [0, 1]

∣∣∣ 1

2
(x2 + t2) ≤ y2

}

= (min{max{2y2 − x2, 0}, 1}) 1
2 .

This operator is not an implication, since the boundary condition I(0, 0) = 1 is
violated (Fig. 1c). The same problem occurs with residual operator of the last
conjunction, which is Choquet integral (Fig. 1b). Therefore we will not discuss
these operators.

3 Properties of Ig and Ig
N implications

In this section we investigate properties of generated implications Ig and IgN . We
focus on relations between these generated implications and some well known
classes of implications.

In the following text we denote by Ig the class of Ig implications and by IgN the
class of IgN implications. Further we denote by ITLC the class of R-implications
based on left-continuous t-norm and by IS,N the class of (S,N)-implications.
With the subscript c we denote a continuous function (we use it in the context
of continuous functions g and N).

Two of the best known classes of implications are R-implications and (S,N)-
implications. In the first part we focus on the relation of the classes IgN and IS,N.
We are interested in two questions – whether the class IgN is a proper subclass of
IS,N and if not, find a subclass C of IgN satisfying C ⊆ IS,N.
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(a) Residual operator of t-norm TY
2 . (b) Residual operator of Choquet integral.

(c) Residual operator of quasi arithmetic mean Mr.

Fig. 1: Residual operators based on the found conjunctions.

Lemma 1. Let I : [0, 1]2 → [0, 1] be an implication. If I ∈ IgcN then I ∈ IS,N.

Proof. We deal with IgN , where N is an arbitrary negation and g is a continuous
generator. Since g is a strictly increasing continuous function with g(0) = 0, it
holds

g(−1)(g(x) + g(y)) = Sg(x, y),

where Sg is t-conorm generated by g. Accordingly

I(x, y) = IgN (x, y) = g(−1)(g(N(x)) + g(y)) = Sg(N(x), y)

and thus I ∈ IS,N.

For illustration we provide the following example:

Example 1. Let g : [0, 1]→ [0,∞] be a function given by the following formula

g(x) = − ln(1− x).
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The function g is strictly increasing and continuous. Its pseudoinverse function
g(−1) is given by

g(−1)(x) = 1− e−x for x ∈ [0,∞].

Then for the function g we get the following implication

Ig(x, y) = 1− eln(x(1−y)) = 1− x+ xy,

which is SP (1− x, y), where SP is dual operator to the product t-norm and Ig

is thus an (S,N)-implication with negation N(x) = 1− x.

Lemma 2. For the classes IgN and IS,N, it holds IgN \ IS,N 6= ∅.

Proof. We assume IgN \ IS,N = ∅.
We turn our attention to the following example: We consider the strictly

increasing function f : [0, 1]→ [0,∞] which is given by formula

f(x) =

{
x if x ≤ 0.5,

0.5 + 0.5x otherwise.

Its pseudoinverse function is given by

f (−1)(x) =





x if x ≤ 0.5,

0.5 if 0.5 < x ≤ 0.75,

2x− 1 if 0.75 < x ≤ 1,

1 if 1 < x.

Finally, for implication based on the function f we get

If (x, y) =





1− x+ y if x ≥ 0.5, y ≤ 0.5, x− y ≥ 0.5,

0.5 if x ≥ 0.5, y ≤ 0.5, 0.25 ≤ x− y < 0.5,

1− 2x+ 2y if x ≥ 0.5, y ≤ 0.5, x− y < 0.25,

min(1− x+ 2y, 1) if x < 0.5, y ≤ 0.5,

min(2− 2x+ y, 1) if x ≥ 0.5, y > 0.5,

1 if x < 0.5, y > 0.5.

Now we will construct a negation N and a t-conorm S such that If (x, y) =
S(N(x), y). From the boundary condition we get

If (x, 0) = f (−1) ◦ f(1− x) = 1− x = S(N(x), 0) = N(x)

and therefore S(x, y) = If (1− x, y) is a t-conorm. But

S(0.3, S(0.35, 0.2)) = S(0.3, 0.5) = 1− 1.4 + 1 = 0.6

S(S(0.3, 0.35), 0.2) = S(0.5, 0.2) = 0.5

and thus S is not associative, which is a contradiction.
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Theorem 6. For the classes Igc , IgcNc
and IS,N, it holds Igc ⊂ IgcNc

⊂ IS,N.

Proof. Apparently Igc ⊆ IgcNc
holds true and the implication ITY

2
from the pre-

vious section forms an example of an implication in IgcNc
\ Igc . From Lemma 1

we get IgcNc
⊆ IS,N. If we consider the (S,N)-implication I(x, y) = max{1− x, y}

and try to express this implication as IgN , we obtain I(x, y) = max{1 − x, y} =
g(−1)(g(1 − x) + g(y)), which is an expresion via additive generator, but the
t-conorm max{x, y} has no additive generator. Therefore IS,N \ IgcNc

6= ∅.
The second part is devoted to the relation of a subclass of IgN , with continuous

generator g and continuous negation N , and ITLC , which is explained in the
following assertion.

Lemma 3. Let I : [0, 1]2 → [0, 1] be an implication such that I ∈ IgcNc
. Then I is

an R-implication based on left-continuous t-norm if and only if I is Φ-conjugate
with the  Lukasiewicz implication.

Proof. (⇒) We assume that I = IgN for some continuous g and N . According to
Lemma 1 we get I(x, y) = Sg(N(x), y). Since both g and N are continuous func-
tions, also Sg is continuous and therefore I is continuous, too. By the assumption,
I is an R-implication based on left-continuous t-norm. From Theorem 2 we di-
rectly get that, I satisfying properties (OP) and (EP) and from Theorem 3 we
finally obtain that I is Φ-conjugate with the  Lukasiewicz implication.

(⇐) Since I is Φ-conjugate with the  Lukasiewicz implication, according to
Theorem 3, I is a continuous implication satisfying (OP), (EP) and from Theo-
rem 2 we get that I is an R-implication based on a left-continuous t-norm.

Theorem 7. Let I : [0, 1]2 → [0, 1] be an implication such that I ∈ IgcNc
. Then

I is an R-implication based on a left-continuous t-norm if and only if I = IϕNϕ
,

where Nϕ(x) = ϕ−1(1− ϕ(x)) for some ϕ ∈ Φ.

Proof. (⇒) Since I is an R-implication based on a left-continuous t-norm, from
Lemma 3 we get that I is Φ-conjugate with the  Lukasiewicz implication, and
thus for all x, y ∈ [0, 1],

I(x, y) = (ILK(x, y))ϕ = ϕ−1(min{1− ϕ(x) + ϕ(y), 1}) = IϕNϕ
(x, y),

where ILK is the  Lukasiewicz implication given by ILK(x, y) = min{1−x+y, 1}.
The last equality holds because, for all x, y ∈ [0, 1]

IϕNϕ
(x, y) = ϕ−1(min{ϕ(Nϕ(x)) + ϕ(y), ϕ(1)}) = ϕ−1(min{1− ϕ(x) + ϕ(y), 1}).

(⇐) This directly follows from Lemma 3 and equality (ILK)ϕ = IϕNϕ
.

Directly from previous theorem we get what are the intersection of ITLC and
IgcNc

, Igc respectively. (Fig. 2).

Corollary 1. ITLC ∩ IgcNc
= IgϕNϕ

, where IgϕNϕ
= {IϕNϕ

| ϕ ∈ Φ}.
Corollary 2. ITLC ∩Igc = Igϕ , where Igϕ = {Iϕ | ϕ ∈ Φ,ϕ(x)+ϕ(1−x) = 1, x ∈
[0, 1]}.
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ITLC

IgcNc

Igc

IgϕNϕ Igϕ

Fig. 2: Intersection of the class of R-implications based on left-continuous t-norm
and the class of IgN implications with continuous generator g and negation N .

4 Conclusion

We have investigated the residual operator of the conjunction. This conjunction
was based on empirical data. It turned out that the only operator based on gener-
ated t-norm is an implication and it belongs to the less known class of generated
implications IgN where N(x) 6= NS(x). We have studied the properties of IgN -
implications. We showed that although the classes IgN and (S,N)-implications
are similar, they are not identical. And also, we examined the relationship be-
tween classes IgN and R-implications based on left-continuous t-norms. In the
future we plan to model implications in human language via fitting residual
operators to empirical data.
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Abstract. Cryptoprimitives rely on thorough theoretical background,
but often lack basic usability features making them prone to uninten-
tional misuse by developers. We argue that this is true even for the
state-of-the-art designs. Analyzing 52 candidates of the current CAESAR
competition has shown none of them have avalanche effect in authenti-
cation tag strong enough to work properly when partially misconfigured.
Although not directly decreasing their security profile, this hints at their
security usability being less than perfect.1

1 Introduction

Nowadays, experts realize that having cryptography attack-resistant from the
theoretical point of view is not sufficient since many attacks are caused by im-
proper use of otherwise sound cryptographic primitives. Developers routinely
produce horrendous implementations (at least from the point of security) when
they neglect to properly set initialization vectors or ignore the requirement of
unique sequence numbers. Recently, Cairns and Steel outlined their vision for
developer-resistant cryptography [5] with designs that cannot be misused by the
programmer.

The question the security-optimist would ask is: Is that not the case only for
old primitives, old protocols and old designs? Are new designs also prone to de-
veloper misuse? We argue the problem is still open – we tested 52 participants of
the current state-of-the-art cryptographic competition by checking the avalanche
effect of the candidates in settings simulating partial misconfiguration.

It is long known that cryptographic primitives such as ciphers, hash functions
and message authentication codes should produce seemingly random outputs.
Further requirements ask for outputs to change unpredictably with respect to
changes in the input. The strict avalanche criterion, as introduced by Webster
and Tavares in 1985 [23], is one way to formalize this. It is satisfied if, whenever
a single input bit is complemented, each of the output bits changes with a 50%
probability. It is commonly used for assessing the security of hash functions,
though using it as a randomness test has also been done before [6].

1 Paper details available at crcs.cz/papers/memics2016
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Fig. 1. High-level overview of the performed experiments. Firstly, a CAESAR cipher
is used to generate a stream of authentication tags. The randomness of this stream is
then assessed by 4 tools (EACirc and 3 statistical testing suites). If the design is good,
it should exhibit an avalanche effect strong enough for the stream to look random.

In this paper, we scrutinize submissions of the ongoing CAESAR compe-
tition (Competition for Authenticated Encryption: Security, Applicability, and
Robustness) [4]. The authentication tags produced by all candidates are exam-
ined using four different software tools: three standard statistical batteries (NIST
STS [14], Dieharder [3] and TestU01 [11]) and a novel genetically-inspired frame-
work (EACirc [22]). The overview of the main experiment idea is depicted in
Figure 1.

The analysis was done separately for three different settings of the public
message number (fixing it to zero, using a counter and generating unique random
value each time). It turned out that none of the tested CAESAR candidates had
an avalanche effect strong enough to produce random-looking tags in the most
seriously misconfigured case with zero public message numbers (thus avalanching
from only a very few changed bits in plaintext). In the case of counter-based and
random public message numbers, the ciphers fared much better.

Firstly, in Section 2, the paper gives an overview of the related research. Then
the basics of authenticated encryption are explained along with the essentials
of CAESAR competition (Section 3). The following sections summarize the way
of generating the tested data (Section 4) and the tools used for the analysis
(Section 5). Lastly, the results and their interpretation are given in Section 6.
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2 Related research

As CAESAR competition is an on-going initiative with many submissions, there
are still not many publications thoroughly examining the security of all the pro-
posed algorithms. F. Abed et al. [1] give an excellent overview of the candidates
along with a classification with regard to their core primitives. K. Hakju and
K. Kwangjo [8] discuss the features of authenticated encryption and predict the
essential characteristics of the submissions to survive the CAESAR competition.

Probably the most comprehensive competition-wide analysis so far has been
done by M. Saarinen [15] using the BRUTUS automatic cryptanalytic frame-
work. Deeper analysis exists only on a per-candidate basis. For example, R. Ankele
in his Ph.D. thesis [2] analyses the COPA authenticated encryption composition
scheme used in several CAESAR candidates. M. Nandi in his 2014 paper [13]
demonstrates a forging attack on COBRA and POET ciphers.

Numerous works tackled the problem of assessing randomness of outputs
from other cryptoprimitives. E. Simion [16] gave a nice overview of statistical
requirements for cryptographic primitives in his work. The Ph.D. thesis of K.
Jakobsson [9] gives both a good theoretical background and a comparison of
commonly available tools for random number testing. Its results are based on
assessing a variety of pseudo-random and quantum random number generators.

Cryptographic competitions are often the target of these analyses since the
unified function API allows for effortless evaluation of a high number of schemes.
M. Turan et al. [19] performed a detailed examination of eStream phase 2 candi-
dates (both full and reduced-round) with NIST STS and structural randomness
tests, finding six ciphers deviating from expected values. In 2010, Doganaksoy et
al. [7] applied the same battery, but only a subset of tests to SHA-3 candidates
with a reduced number of rounds as well as only to their compression functions.

A different strategy is employed in the EACirc framework – it uses a genetically-
inspired process to find a successful distinguisher (function capable for differenc-
ing between cipher output and random stream). The framework has been used for
assessing the randomness of outputs produced by the round-limited eSTREAM
and SHA-3 candidates [22, 18]. Although still falling behind in some cases, this
approach surpasses NIST STS in a few instances.

3 Authenticated encryption

A cryptosystem for authenticated encryption simultaneously provides confiden-
tiality, integrity, and authenticity assurances on data – decryption is combined
in a single step with integrity verification. Authenticated ciphers are often built
as various combinations of block ciphers, stream ciphers, message authentication
codes, and hash functions. There are many examples commonly used today, such
as the Galois/counter mode (GCM) [12] based on block ciphers.

Combining confidentiality and integrity assurances into a single scheme has
tremendous advantages as combining a confidentiality mode with an authen-
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tication mode could be error prone and difficult2. Therefore, following a long
tradition of cryptography competitions, CAESAR [4] aims to create a portfolio
of authenticated encryption systems intended for wide public adoption.

Each submission in CAESAR specifies a family of authenticated ciphers.
Family members differ only in parameters (e.g. key length, the number of internal
rounds). There were 56 different designs submitted to the first round. Taking into
account all possible parameter sets, this amounts to 172 independent schemes.
Till the announcement of the second-round candidates, 9 ciphers were withdrawn
by their authors. On July 7th 2015, 29 ciphers were chosen for the second round.
Later, on August 15th 2016, 15 ciphers out of these were selected for the third
round.

Our goal was to test as many authenticated encryption schemes as possible.
Using CAESAR candidates enabled us to test many ciphers and many config-
urations automatically due to the shared API. All the candidate source codes
were taken from the 1st-round SUPERCOP repository managed by eBACS [21].

In the end, there were 168 different ciphers tested in all performed exper-
iments. From 172 submitted independent schemes (56 designs with different
parameter sets), 6 were not tested. Firstly, we could not get the AVALANCHE
candidates working properly (segmentation fault while running). Secondly, Julius
did not compile due to problems with the inclusion of the external AES routines
provider. Thirdly, POLAWIS seemed not to have followed the prescribed API.
Lastly, the implementation of PAES is probably faulty, since it did not pass our
encrypt-decrypt sanity test. We might have been able to fix most of these cases,
but doing so would require extensive interventions in the code increasing the
possibility of error. Apart from the submitted candidates, we tested 2 versions
of AES/GCM referenced by the CAESAR committee as a design baseline.

4 Tested data streams

The aim of the performed experiments is to assess randomness of authentication
tags produced by many authenticated encryption schemes. The same analysis
could also be performed on produced ciphertext, but that it out of scope of this
paper. In particular, we inspect tags provided by CAESAR candidates in three
independent scenarios differing in public message number setting. An overview
of tag generation is given below and in Figure 2.

The cipher has 5 inputs: plaintext (encrypted and authenticated user input),
associated data (authenticated user input), key, secret message number (secret
nonce) and public message number (public nonce). The produced tag (extra
ciphertext bytes when compared to the plaintext length) is determined by the
cipher design. In the majority of the cases, this means 128 bits (16 bytes), but
some candidates produce shorter tags (2, 4, 8 or 12 bytes). These tags were
concatenated to form a continuous stream suitable for randomness assessment.

2 “It is very easy to accidentally combine secure encryption schemes with secure MACs
and still get insecure authenticated encryption schemes.” [10]
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Fig. 2. The process of creating the tested data streams by individual CAESAR candi-
dates. The cipher is initialized as depicted in the diagram. The produced authentication
tags are then concatenated to form a continuous stream suitable for randomness anal-
ysis.

From the nature of the arguments prescribed by the CAESAR API, the pub-
lic message number is probably the argument to be most easily (unintentionally)
misused. Security requirements for keys are well known, secret message numbers
are usually not used, plaintext and associated data are mostly self-explanatory.
Public message numbers are sometimes required to be unique (to have proper-
ties of nonces), but sometimes this is not necessary. In a way, we deem testing
different modes of public message numbers as examining the robustness of the
cipher design. The fields were initialized as follows:

– Key
The key value was taken randomly but was fixed. For EACirc (one of the
used tools), 1 000 independent runs used different keys to allow for variation
(otherwise, the same numerical results would be produced).

– Associated data, secret message number
We used two bytes of associated data; the length of the secret message num-
ber was determined by the cipher or the parameter set. Both fields’ values
were fixed to binary zeros. Note that only three ciphers used secret message
numbers.

– Public message number
This was the only parameter explored in different settings:
• Fixed to a string of binary zeros for the whole time.
• Increasing as a counter – each value unique but similar to others.
• Having each value completely random.

– Plaintext
The plaintext was 16 bytes long, formatted as a single counter starting from
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zero. We could not use fixed-value plaintext, because, in the case of fixed-
value public message numbers, the produced tags would be identical (con-
sidering settings of the other arguments). A plaintext of binary zeros would
have been possible in the other two modes for public message numbers, but
we refrained from doing so to keep the experiments as comparable as possible
(with as similar settings as possible).

In summary, if we denote the cipher as a function F (plain, adata, key, smn, pmn)
producing the authentication tag (the ciphertext is not used in our analysis, but
inspecting it would also be interesting), the final analyzed stream in the scenario
with random public message numbers looks as follows:

Stream =F (0, 0, randA, 0, rand1) ||F (1, 0, randA, 0, rand2) ||
F (2, 0, randA, 0, rand3) ||F (3, 0, randA, 0, rand4) || ...

5 Randomness testing tools

The most common way of testing randomness is using statistical testing. From
the multitude of available batteries, we used the following three: NIST STS
(older, yet still commonly used and a valid NIST standard), Dieharder (modern
framework reimplementing other suites as well as adding brand new tests) and
TestU01 (another modular framework implementing many tests).

Although the p-value of a randomness test focusing on a single characteristic
has a clear statistical interpretation, the interpretation of results produced by
testing suites is somewhat problematic. We need to determine what number
of failed tests allows us to reject randomness of the assessed sequence while
respecting the chosen significance level. For this, we use the methods proposed
in 2015 by M. Sýs et al. [17].

For all experiments, we chose the significance level of α = 1%, which is the
default value for NIST STS [14]. This keeps the type I. error (false positives)
reasonably low while preventing the type II. error (false negatives) to reach too
high values.

We used NIST STS version 2.1.1 with the default parameters (block lengths)
for all tests. To comply with the minimal required stream length for individual
tests [14], we tested 100 independent 1 000 000 bit long sequences for each can-
didate. In summary, NIST STS used about 12 MiB (about 700 000 tags) of data
from each candidate for each test.

Dieharder version 3.31.1 was used. The two parametrizable tests were con-
figured with recommended values. The length of the input stream processed by
Dieharder varies from test to test. The humblest (Diehard 3D-sphere test) re-
quired about 48 kiB, while the greediest one (Bit distribution test) took about
9.2 MiB. To ensure the best possible comparability with the other test suites, we
again analyzed 100 independent samples of the input. In summary, Dieharder
tests used between 4.7 MiB (about 300 000 tags) and 916 MiB (about 60 000 000
tags) of input data for each candidate (depending on the test).
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TestU01 was used in version 1.2.3. The most relevant sub-batteries are Rab-
bit, Alphabit and BlockAlphabit. These are intended for testing finite binary
sequences. The length of the input stream taken by TestU01 can be set arbitrar-
ily. To have an amount of data comparable to the other used batteries, we chose
to process 230 bits for each test. In summary, TestU01 thus used about 128 MiB
(about 8 400 000 tags) of input data for each test.

EACirc represents a completely different approach to testing data random-
ness: The main idea is to use supervised learning techniques based on evolution-
ary algorithms to design and further optimize a successful distinguisher – a test
determining whether its input comes from a truly random source or not. The
distinguisher is represented as a hardware-like circuit consisting of simple inter-
connected functions. The used settings cause EACirc to process approximately
2.24 MiB of data produced by the tested cryptoprimitive for a single EACirc run.
This amounts to about 2.24 GiB (about 150 000 000 tags) of data for a single
experiment with 1 000 runs.

6 Results and interpretation

A selection of the numerical results can be seen in Table 1. The table aims for
a representative selection of the interesting cases including all categories from
the reference schemes to the algorithms that passed to the third (currently last)
round. For the complete numerical results and detailed reasoning, see [20].

Firstly, let us compare the outcomes for the three inspected public message
number modes. We expected the random-valued to perform the best, followed
by counter-based and then by zero-fixed public message numbers. We reasoned
that the more differences there will be among the used values, the easier it will
be for the cipher to produce a random-looking tag (since it has more entropy to
start from). As stated in the submission call, the ciphers were allowed to lose all
security in case of reused (public message number, private message number)-pair
under the same key. Nevertheless, we expected some (albeit not many) ciphers
will be able to retain the apparent randomness of the produced tag – even though
it would require an adamant avalanche effect (all arguments are identical apart
from a few bits in plaintext).

From the conducted experiments we see that the primary hypothesis (ran-
dom values performing better than a counter and much better than zeros) was
confirmed. However, none out of the tested candidates passed with the public
message numbers fixed to zero. The single bit change in plaintext with all other
arguments fixed might not have been enough to cause the avalanche effect needed
to produce a tag looking sufficiently random.

Secondly, let us inspect the results for the individual candidates (see Ta-
ble 1). Tags of just five ciphers (AES/GCM, Marble, AEC-CMCC, AES-CPFB,
Raviyoyla) were distinguishable from random streams with counter-valued pub-
lic message numbers. Three of these ciphers (Marble, AES-CMCC, AES-CPFB)
also failed in the random-valued scenario. The evidence is still too weak to deem
the designs insecure – it may merely be the case they produce a constant delim-
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iter between the ciphertext and tag, violating the statistical randomness of the
created tag. To draw any conclusions, a detailed inspection of the ciphers would
need to be performed. It is, however, worth mentioning that no candidates fail-
ing in either counter- or random-valued scenario were selected by the CAESAR
committee to the second round of the competition.

Apart from the findings for the CAESAR candidates, the results allow us to
gain insights into the capabilities of the used randomness testing tools. Based on
the previous works [18], we expected the randomness distinguishing abilities of
EACirc and NIST STS will be similar while both will be surpassed by Dieharder
and TestU01. On the one hand, the observed results showed many deficiencies of
EACirc – it performed worse than NIST STS in given tested scenarios. On the
other, all three statistical batteries achieved comparable results. However, before
any conclusions on the quality of the batteries are drawn, one has to be aware
there are many domains in which these tools remain incomparable. They inspect
different amounts of data and have different modes of operation (batteries see
the stream as a whole, EACirc processes short, distinct test vectors).

There is one case contrary to the general behavior observed above (see Ta-
ble 1): Raviyoyla with randomly initialized public message numbers for each
test vector seems to be successfully rejected from the random stream by EACirc
although none of the statistical batteries support such result. It appears very
promising but also requires additional inspection and enhanced testing to an-
nounce a case of EACirc surpassing all tested statistical batteries.

The results lead us to several interesting hypotheses requiring further inspec-
tion. The candidates failing in randomness tests would deserve a deeper manual
inspection to prove their potential (in)security. The used statistical testing suites
themselves would be an interesting target for further research. It turned out that
interpretation of test suites is quite difficult, and thorough research on test in-
terdependence is necessary. Another perspective direction would be weakening
the cipher designs (e.g. by limiting the number of internal rounds) to achieve a
fine-grained comparison of the used tools.

7 Summary

We have set off to examine modern authenticated encryption systems from
the point of resistance against common developer misconfiguration. In the end,
we assessed outputs from 168 distinct schemes (all but six CAESAR submis-
sions) in three different configurations using multiple software tools (NIST STS,
Dieharder, TestU01 and EACirc).

We examined a scenario with random (but fixed) keys, counter-based plain-
text and three different settings of public message numbers. As expected, tags
produced in configurations with random public message numbers fared better
than the ones from counter-based configurations. Both did better than tags
from fixed-value public message numbers – no submission had an avalanche ef-
fect strong enough to produce random-looking tags in the scenario where all test
vectors had the same public message numbers.
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Only three CAESAR submissions (Marble, AEC-CMCC, Raviyoyla) failed
to produce seemingly random tags with counter-based public message numbers.
For entirely random public message numbers, only Marble failed convincingly.
AEC-CMCC achieved a borderline value in Dieharder and passed in other tools.
Raviyoyla seems to have failed according to EACirc – this case is suspicious and
worth of further investigation, since it is the only case where EACirc surpassed
the other tools. Importantly, none of these candidates made it to the second
round of the competition (indirectly supporting our results).

Regarding the tools used for tag evaluation, EACirc seemed to be the least
suitable for the given task, being beaten by all the statistical batteries. The
batteries themselves (NIST STS, Dieharder and TestU01) produced comparable
results. The only exception is the case of Raviyoyla, in which EACirc seems to
have outperformed all the other tools. However, when making comparisons, one
has to take into account the amount of data inspected by each tool and their
different modes of operation.

All in all, not even the state-of-the-art authenticated encryption designs do
not have avalanche effect strong enough in the case with zero-fixed public mes-
sage numbers. Although not forming a direct practical attack on the ciphers, it
breaks semantic security of the scheme, since the attacker is able to distinguish
two messages based on the leakage present in inspected scenarios. A security-
optimist from the introduction may see this as an interesting area for further
improvements.
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Abstract. Our work is generally focused on recommending for small
or medium-sized e-commerce portals, where explicit feedback is absent
and thus the usage of implicit feedback is necessary. Nonetheless, for
some implicit feedback features, the presentation context may be of high
importance. In this paper, we present a model of relevant contextual
features affecting user feedback, propose methods leveraging those fea-
tures, publish a dataset of real e-commerce users containing multiple user
feedback indicators as well as its context and finally present results of
purchase prediction and recommendation experiments. Off-line experi-
ments with real users of a Czech travel agency website corroborated the
importance of leveraging presentation context in both purchase predic-
tion and recommendation tasks.

1 Introduction

We face continuous growth of information on the web. The volume of products,
services, offers or user-generated content rise every day and the amount of data
on the web is virtually impossible to process directly by a human. Automation of
web content processing is necessary. Recommender systems aim to learn specific
preferences of each distinct user and then present them surprising, unknown, but
interesting and relevant items. Users do not have to specify their queries directly
as in a search engine. Instead, their preferences are learned from their ratings
(explicit feedback) or browsing behavior (implicit feedback).

However, some domains, e.g., small or medium-sized e-commerce enterprises,
introduce specific problems and obstacles making the deployment of recom-
mender systems more challenging. Let us list some of the obstacles:

– High concurrency has a negative impact on user loyalty. Typical sessions are
very short, users quickly leave to other vendors, if their early experience is
not satisfactory enough. Only a fraction of users ever returns.

– For those single-time visitors, it is not sensible to provide any unnecessary
information such as ratings, reviews, registration details etc.

– Consumption rate is low, users often visit only a handful of objects.
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All the mentioned factors contribute to the data sparsity problem. Although
the total number of users can be relatively large (hundreds or thousands per
day), explicit feedback is very scarce and implicit feedback is also available only
for a fraction of objects. Furthermore, as the space of potential implicit feedback
features is quite large, it might be challenging to select the right approach to
utilize them. In general, some rapidly learning algorithms, capable to recommend
from only a limited feedback are needed.

Despite these obstacles, the potential benefit of deploying recommender sys-
tems is considerable, it can contribute towards better user experience, increased
user loyalty and consumption and thus also improve vendors key success metrics.

Our work within this framework aims to bridge the data sparsity problem
and the lack of relevant feedback by modelling and utilizing novel/enhanced
sources of information, foremost implicit user feedback features.

More specifically, the work presented in this paper focuses on the question
how to define and collect user preference 1 in scenarios, where we cannot in-
vasively ask users to provide it (i.e., there is no explicit feedback), but we can
interfere with the website source code (and thus observe any type of user ac-
tions).

1.1 Main contributions

Main contributions of this paper are:

– Model of user feedback features enriched by the context of the page and
device.

– Methods interpreting this model of user feedback as a proxy of user engage-
ment.

– Experiments on real users of a Czech travel agency.

We also provide datasets of user feedback, contextual features and objects at-
tributes for the sake of repeatability and further experiments.

2 Related Work

2.1 Implicit Feedback in Recommender Systems

Contrary to explicit feedback, implicit feedback approach merely monitors user
behavior without intruding it. Implicit feedback features varies from simple user
visit or play counts to more sophisticated ones like scrolling or mouse movement
tracking [5, 16]. Due to its effortlessness, data are obtained in much larger quan-
tities for each user. On the other hand, they are inherently noisy and harder to
interpret [4].

Our work lies a bit further from the mainstream of the implicit feedback
research. To the best of our knowledge, vast majority of researchers focus on

1 Please note that we will freely interchange user preference and user engagement
concepts.
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interpreting single type of implicit feedback, e.g., [17], or proposing various rec-
ommending algorithms while using predefined implicit feedback, e.g., [3, 4, 13,
14].

Our research goes towards modelling users preference and engagement based
on multiple types of implicit feedback. We can trace such efforts also in the
literature. One of the first paper mentioning implicit feedback was Claypool
et al. [1] comparing several implicit preference indicators against explicit user
rating. This paper was our original motivation to collect and analyze various
types of user behavior to estimate user preference. More recently Yang et al. [16]
analyzed several types of user behavior on YouTube. Authors described both
positive and negative implicit indicators of preference and proposed a linear
model to combine them.

In our previous work, we defined a complex set of potentially relevant set
of implicit user feedback features with respect to the e-commerce domain and
provided software component collecting it [7]. We also show that using multiple
types of feedback features provides significant improvements over using single
feedback feature in purchase prediction task [9, 10]. However, in our previous
works we used feedback features in its raw form without any respect to the con-
text of the currently visited page or users browsing device, which can potentially
affect user behavior.

2.2 Context Awareness

In this paper, we focus on the presentation context (we will also refer to it as
a context of page and device) rather than more commonly utilized context of
the user. We follow the hypothesis that if the same information is presented in a
different form, the users response might differ as well. We can trace some notions
of presentation context in the literature. For example, Radlinski et al. [12] and
Fang et al. [3] considered object position as a relevant context for clickstream
events. Also Eckhardt et al. [2] proposed to consider user ratings in the context
of other objects available on the current page.

Closest to our work is the approach by Yi et al. [17], proposing to use dwell
time as an indicator of user engagement. Authors discussed the role of several
contextual features, e.g., content type, device type or article length on extitdwell
time feedback. Nonetheless, there are several substantial differences between our
approaches. First, Yi et al. focused solely on the dwell time and considered nor-
malized dwell time directly as a proxy to the user engagement. Our approach
is to integrate multiple indicators of user preference by using machine learning
methods. Furthermore, the list of proposed contextual features are different as
both the domains and data acquisition methods differ. We introduced, e.g., fea-
tures based on page and browser window dimensions, not used in Yi et al. Last,
Yi et al. proposed to utilize context merely to normalize dwell time, however we
include context in the feature engineering process.

Using the Context of User Feedback in Recommender Systems
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3 Materials and Methods

3.1 Outline of Our Approach

As already mentioned, the key part of our work aims on implicit user feedback,
user preference and its usage in recommender systems. In traditional recom-
mender systems, user u rates some small sample S of all objects O, which is
commonly referred as user preference ru,o : o ∈ S ⊂ O. The task of traditional
recommender systems is to build suitable user model, capable to predict rat-
ings r̂u,o′ of all objects o′ ∈ O. If there are no explicit feedback, user preference
must be inferred from implicit feedback. We denote this as inferred preference
ru,o, o ∈ S. If there is a single feedback feature fu,o, the preference is usually
inferred directly fu,o ≈ ru,o [4]. However, some more elaborated approaches are
necessary, if there are multiple feedback features [f1, ..., fi].

Our approach is based on the hypothesis that purchases represent fully pos-
itive user preference:

ru,o :=

{
1 IF u bought o
0 OTHERWISE

(1)

In another words, we promote purchases to the level of explicit user ratings.
Unfortunately, the density of purchases is very low in the e-commerce 2 , so it
is impractical to base recommendations directly on purchases. We also suppose
that other visited, but not purchased objects reflect some level of user engage-
ment, which can be inferred from other implicit feedback features. Our aim is to
show that such inferred user preference provides better source information of a
recommender system than binary visits or purchases. Our approach (see Fig. 1)
is divided into three steps.

In the first step, feature engineering (Fig. 1c), we combined raw feedback
features F : [f1, ..., fi], presentation context features C : [c1, ..., cj ] and user
statistics into a set of derived feedback features F : [f1, ..., f i]. Details of this
procedure can be found in Section 3.2.

In the second step, the set of derived feedback features is transformed into
the inferred user preference [f1, ..., f i]u,o → ru,o (Fig. 1d). The transformation
is made via machine learning methods aiming to predict, whether the object o
was purchased by the user u, given the feedback [f1, ..., f i]u,o. More details can
be found in Section 3.3.

Finally, we use ru,o as an input of recommender systems to provide user with
the list top-k objects (Fig. 1e). The description of used recommending algorithms
can be found in Section 3.4.

3.2 Implicit User Feedback and Presentation Context

In this section, we will describe the model of implicit feedback F , presentation
context C and feature engineering steps transforming it into derived feature setF .
Raw feedback features and presentation context features are listed in Table 1

2 Less than 0.4% of the visited objects were purchased in our dataset.
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- CB object attributes
- Raw user feedback
- Contextual features

IPIget
Derived Feedback 
Features Dataset

Purchase 
prediction 
methods

RECOMMENDER 
SYSTEM

Recommended objects  𝑅𝑢 = {𝑜1, … , 𝑜𝑘}

Collects feedback 𝐹𝑢,𝑜 = 𝑓1, … , 𝑓𝑖
context 𝐶𝑢,𝑜 = 𝑐1, … , 𝑐𝑗

Feature engineering
𝐹𝑢,𝑜 & 𝐶𝑢,𝑜 →  𝐹𝑢,𝑜

Purchase 
probability  𝑟𝑢,𝑜

CB attributes

USER

E-COMMERCE WEBSITE

User visits a webpage

IPIget DATABASE

(a)

(b)

(c)

(d)

(e)

(f)

 𝐹𝑢,𝑜

Fig. 1. Outline of our approach on utilizing complex user feedback and presentation
context in recommender systems. Implicit feedback features and presentation context
are collected by the IPIget tool (a) and stored in a database (b). Feature engineering
process results into the set of derived feedback features (c) used for purchase prediction.
The resulting purchase probability (d) serves as an input of a recommender system (e),
which provides recommendations to the user (f).

Table 1. Description of the raw user feedback features.

Feature Description

f1 View Count The number of visits of the object
f2 Dwell Time Total time spent on the object
f3 Mouse Distance Approximate distance travelled by the mouse cursor
f4 Mouse Time Total time, the mouse cursor was in motion
f5 Scroll Distance Total scrolled distance
f6 Scroll Time Total time, the user spent by scrolling
r Purchase Binary information whether user bought this object.

and Table 2. All features were collected with respect to the current user u and
object o.

Let us now describe some features in more detail. Raw feedback features con-
tain volumes of interaction generated by common user devices (mouse, keyboard
etc.), or triggered by some GUI component. All the raw indicators have lower
bounds equal to zero (i.e., no interaction was recorded) and except for purchases,
they have no upper bound. We consider purchases as a golden standard for the
user preference on e-commerce domains.

Comparison between page and browser dimensions is crucial to determine
necessity of scrolling the page and also serves as natural rate of the scrolled
distance. Number of images, links, text and page sizes serve as a proxy to the
page complexity, which should affect the volumes of user actions needed to fully
evaluate the page. For example the page with higher amount of text usually
takes longer time to read.

Using the Context of User Feedback in Recommender Systems
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Table 2. Description of the presentation context features.

Feature Description

c1 Number of links Total number of links presented on the page
c2 Number of images Total number of images displayed on the page
c3 Text size Total length of the text presented on the page
c4 Page dimensions Width and height of the webpage
c5 Browser window dimensions Width and height of the browser window
c6 Visible area ratio Ratio between browser and page dimensions
c7 Hand-held device Binary indicator, whether a cellphone or tablet is used

Table 3. Description of the features introduced in the feature engineering step.

Feature Description

fu
i Relative User Feedback The ratio between raw feedback and its per-user

average value.
fsc Scrolled area The percentage of the page which have been pre-

sented in the browser visible area.
fhb Hit bottom Binary indicator whether the user scrolled up to

the bottom of the page.
fi,j Feedback vs. Page complexity The ratio between raw feedback (e.g., dwell time)

and page complexity feature (e.g., number of
links).

Derived feedback features were composed as follows. First, we defined relative
per-user feedback features fui to be able to distinguish specific users browsing
patterns (2), where avgu(fi) denotes average of feature fi with respect to all
records of user u.

fui := fi/avgu(fi′ : u visited i′) (2)

Next, we defined two features, scrolled area fsc and hit bottom page fhb, uti-
lizing scrolling behavior and page dimensions. While the hit bottom is a simple
indicator, whether the page was fully scrolled, the scrolled area represents the
fraction of the page being visible for the user. Finally we aimed to relate vol-
ume of collected feedback with the page complexity context (number of links,
images and text, page dimensions and visible area ratio). As there is no single
measure of the page complexity, we opted for the Cartesian product of feedback
and reciprocal page complexity features fi,j (3).

fi,j := fi/cj ; where fi ∈ {f1, ..., f6, fu1 , .., fu6 } and cj ∈ {c1, c2, c3, c4, c6} (3)

In our future work, we plan to investigate the experimental results with respect
to the page complexity problem in order to deliver single page complexity metric.
Table 3 lists all new features.

As our main aim is to evaluate contribution of presentation context to the
recommendation quality, we defined and evaluated derived feedback datasets as
follows:
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– Dwell Time dataset follows the recommendation from [17] on using dwell
time as a proxy towards user engagement. It contains only features f2 and
fu2 .

– Raw Feedback dataset contains all fi, f
u
i feedback features but no context.

– Raw + Context dataset contains fi, f
u
i , ci, fsc and fhb features, but not fi,j .

– Finally, all features dataset contains all described features (fi, f
u
i , ci, fsc,

fhb and fi,j).

3.3 Predicting Purchase Probability from User Feedback

In order to predict purchases from derived feedback features, we have selected
five machine learning techniques. For each technique, we used its R implemen-
tation from the caret package 3. As the purchase indicator is a binary attribute,
classification would be a natural option. However, our primary goal is not ex-
actly predict purchased items. We need some better refined approximation for
the user engagement as an input of the recommender system. Thus we need to
focus either on classification methods class probabilities, or consider purchase
prediction as a regression task. We will further refer to both purchase probabil-
ity (classification methods) and expected value of dependent variable (regression
methods) as purchase probability ru,o.

A potential advantage of regression techniques is the capability of provid-
ing negative preferences, i.e., infer user preference < 0, but learning regression
function from binary training data could be highly biased. Based on the pre-
vious discussion, we decided to evaluate following classification and regression
methods in this task.

Linear Regression (LinReg) is a simple regression method aiming to learn
coefficients A, b with the minimal square loss of the linear function y = AX +b,
where y is a dependent variable and X is a vector of independent variables (r
and F in our case).

Lasso Regression (Lasso): The least absolute shrinkage and selection op-
erator is a regression method that performs feature selection, which makes it
capable to deal with higher dimensional datasets. The LASSOs objective is to
find the parameter vector A that minimizes the sum of squared errors plus the
regularization term λ ‖A‖1, where λ is a hyperparameter controlling the regu-
larization.

AdaBoost regression (Ada LinReg): Adaptive boosting is a meta-algorithm
based on the principle of using weak learning algorithm iteratively over partially
changed train sets. AdaBoost increases the weights of instances poorly predicted
in previous iterations, thus although the individual learners are weak, the final
model converge to a strong learner. In this case, linear regression was used.

Decision tree classification (J48): Specifically, the J48 implementation
of the C4.5 algorithm was used. The C4.5 algorithm selects attributes on each
node based on the normalized information gain. After the tree construction, it
performs pruning, controlled by the hyperparameter c.

3 http://topepo.github.io/caret/
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AdaBoost classification (Ada Tree): The algorithm is in principle the
same as Ada LinReg, except that the decision stump was used as a weak learner
in this case.

3.4 Recommending based on Purchase Probability

The final step of our approach is to use purchase probability ru,o in recommender
systems. Our previous work [11] shown that purely collaborative algorithms are
not suitable for small e-commerce enterprises, so we decided to evaluate one
content-based and one hybrid recommending algorithm.

Vector Space Model (VSM) is well-known content-based algorithm brought
from information retrieval. We use the variant described in [6] with binarized
content-based attributes serving as document vector, TF-IDF weighting and co-
sine similarity as objects similarity measure. The algorithm recommends top-k
objects most similar to the user profile.

For the purpose of content-based recommendation, the dataset of objects
(travel agency tours) attributes was used. The dataset contains approximately 20
attributes, such as type of the tour, accommodation quality, destination countries
and regions, price per night, discount etc. For more information, please refer to
[11].

Popular from similar categories recommender (Popular SimCat).
Popular SimCat, is a simple hybrid approach based on collaborative similarity
of product categories. There are two motivations for this algorithm.

First, in our early experiments on a Travel Agency website [8], recommending
objects from currently visited category turns out to be quite a good baseline.
However, some categories were very narrow, containing only a handful of objects,
sometimes even less than the intended size of the recommended objects list. For
such a narrow category, it might be useful to also recommend objects from
categories similar to the current one. Furthermore, there are substantially fewer
categories than objects in the dataset (and the list of categories is much more
stable), so it is possible to use collaborative similarity of categories.

Second, one of the most successful non-personalized recommendation ap-
proach is simply recommending the most popular objects.

Putting both motivations together, the algorithm in training phase computes
categories similarity and objects popularity: Categories similarity is defined as
Jaccard similarity, based on the users covisiting both categories (4), where Uc1

and Uc2 are sets of users who visited category c1 and c2 respectively.

Sim(c1, c2) :=
|Uc1 ∩ Uc2|
|Uc1 ∪ Uc2|

(4)

The objects popularity is defined as the logarithm of the number of objects
visits in the train set (5).

Pop(oi) := log

( ∑

∀ users

V iewCount(oi)

)
(5)
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In the prediction phase, the algorithm collects all visited and similar cate-
gories for the current user and orders the objects according to the Pop(oi) ∗
Sim(c[oi]) scoring function. More details can be found in [11].

4 Evaluation and Results

4.1 Evaluation Protocol

In this section, we would like to provide details of the evaluation procedure. In
total four datasets of user feedback, five purchase prediction methods and two
recommending algorithms were evaluated. Before we describe the protocol itself,
let us mention some facts about the datasets used in the experiments.

The dataset of user feedback (including contextual features) was collected
by observing real visitors of a mid-sized Czech travel agency. The dataset was
collected by the IPIget tool during the period of more than one year, contains
over 560K records and is available for research purposes4. For the purpose of
the evaluation, we restricted the dataset only to the users, who visited at least 3
objects and purchased at least one of them. The resulting datasets contained 516
distinct users, 666 purchases, 1533 objects and over 23000 records, in average
45 records per user. However, please note that the number of records per user
approximately follows the power-law distribution.

The evaluation of the proposed methods was carried out in two steps.
In the first step, purchase prediction , the task was to identify, which ob-

jects visited by the current user were purchased. Even though it looks like a
binary classification, it is not exactly true, as we want a finer grained ordering
as an input of the recommender system and we do not insist on proper classifi-
cation of unpurchased items. We evaluate the problem as a ranking task, where
ordering is induced by the purchase probability ru,o. Objects actually purchased
by the user should appear on top of the list.

The evaluation was performed according to the leave-one-out cross-validation
protocol applied on the user set. Machine learning algorithms were trained on the
feedback data from all users, except for the current one, and afterwards predict
for each object o visited by the current user u its purchase probability ru,o.
The ordering induced by ru,o was evaluated in terms of normalized discounted
cumulative gain (nDCG), recall of purchased objects in top-k items (recall@top-
k) and its average ranking position.

This scenario simulates a well-known new user problem. When a new user en-
ters the system, more complicated machine learning models cannot be retrained
in real-time, taking into account feedback of the current user, so we need to
infer his/her preferences from other users data. Using real-time local models,
i.e., train only from the feedback of the current user, is impractical as there is
usually not enough (if any) positive feedback.

The second step, recommendation experiment , evaluates quality of the
list of recommended objects in terms of position of the actually purchased ones.

4 See http://bit.ly/2dsjg6j
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Table 4. Results of the purchase prediction methods in terms of nDCG for different
implicit feedback datasets. The best results are in bold.

Method DwellTime Raw feedback Raw + Context All feedback

LinReg 0.725 0.714 0.834 0.828
Lasso 0.730 0.719 0.831 0.827
Ada LinReg 0.713 0.713 0.863 0.864
J48 0.738 0.740 0.891 0.893
Ada Tree 0.757 0.763 0.950 0.950

The evaluation of this step was also performed according to the leave-one-out
cross-validation, however applied on the set of purchased objects. For each pair
of the purchased object o and the user u who bought it, we trained recommender
systems based on all other available data and ask it to recommend top-k best
objects for the current user R̂u : {o1, ..., ok}. Again, we consider the task as
ranking, so the actually purchased object should appear on top of the list. Results
were evaluated in terms of nDCG and recall@top-k metrics.

4.2 Results: Purchase Prediction

Table 4 depicts overall results of the purchase prediction experiment. The results
of nDCG are surprisingly high, especially in case of Ada Tree prediction method,
however please note that the R implementation of nDCG metric5 compensates
for ties in the ranking. The results of other evaluation metrics (recall@top-k,
average position) were very similar, so we omit them for the sake of space. Both
classification methods clearly outperform all regression methods. Adding con-
textual features substantially improved prediction capability of all methods, but
adding page complexity based features did not improve the results of all methods
except for J48. Ada Tree classifier performed the best across all datasets.

4.3 Results: Recommendation Experiment

Table 5 depicts the overall results of the recommendation experiment. Addi-
tionally, to the purchase probability inputs we also evaluated Binary baseline
method, which simply considers all visited objects as relevant6. For the sake
of space, we do not display detailed the results of recall@top-k metric, how-
ever it mostly corresponds with nDCG. The best performing method in terms of
recall@top-5 and recall@top-10 was J48 with Raw+Context dataset and Popular
SimCat recommender, achieving recall of 0.297 and 0.376 for top-5 and top-10
respectively.

5 StatRank package, https://cran.r-project.org/web/packages/StatRank
6 We did not evaluate the input based solely on purchases, because over 90% of users

purchased only one item and recommending algorithms could not predict anything
for them.
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Table 5. Results of the recommendation experiment in terms of average nDCG for
different implicit feedback datasets and recommending algorithms. Baseline methods
are depicted in grey italics, the best results are in bold.

Method Recommender DwellTime Raw feedback Raw + Context All feedback

Binary VSM 0.304
LinReg VSM 0.299 0.297 0.215 0.215
Lasso VSM 0.304 0.298 0.213 0.216
Ada LinReg VSM 0.302 0.301 0.215 0.215
J48 VSM 0.299 0.295 0.303 0.311
Ada Tree VSM 0.293 0.298 0.294 0.296
Binary Popular SimCat 0.362
LinReg Popular SimCat 0.342 0.342 0.267 0.270
Lasso Popular SimCat 0.359 0.343 0.260 0.270
Ada LinReg Popular SimCat 0.361 0.360 0.264 0.264
J48 Popular SimCat 0.353 0.354 0.373 0.372
Ada Tree Popular SimCat 0.358 0.358 0.363 0.370

As can be seen from the results, all regression based methods performed
worse than the baseline and furthermore its performance gradually decreased
for enriched datasets in the most cases. This might be a problem of learning
regression from only binary input, but as all regression methods were based on
a linear model, we do not want to conclude on this subject yet. On the other
hand, Popular SimCat with both Ada Tree and J48, as well as VSM with J48
outperformed baselines. Furthermore as can be seen in Table 6, there is a signif-
icant performance improvement between raw feedback and datasets containing
contextual features for those methods. It seems that using page complexity based
features fi,j can also improve performance of some methods, however the results
are less clear at this point.

Surprisingly, the relatively simple Popular SimCat algorithm produced con-
sistently better results than VSM. This is in contradiction with our previous
experiments with these algorithms [11], however we need to note that the target
of the previous experiment was to predict visited instead of purchased objects.
We would like to investigate this topic more in our future work.

5 Conclusions and Future Work

In this paper, our aim was to show that user feedback should be considered with
respect to the context of the page and device. We defined several features de-
scribing such context and incorporate them into the user feedback feature space.
In the purchase prediction task, the usage of context clearly improved perfor-
mance of all learning methods in predicting purchased objects. Furthermore, by
using purchase probability as a proxy towards user engagement, we were able to
improve quality of the recommendations over both binary feedback baseline and
uncontextualized feedback in terms of nDCG and recall@top-k.
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Table 6. P-values of the binomial significance test [15] for selected combination of
algorithms. The test was performed with respect to the recall of purchased object in
top-K.

Recommender Baseline Method
p-value
recall@5

p-value
recall@10

VSM
Binary J48 (All feedback) 0.028 0.026
J48 (Dwell time) J48 (All feedback) 0.024 0.001

Popular SimCat

Binary J48 (All feedback) 0.025 0.198
Binary J48 (Raw + Context) 0.036 0.015
Binary Ada Tree (All feedback) 0.009 0.154
J48 (Raw feedback) J48 (All feedback) 0.001 0.004
Ada Tree (Raw feedback) Ada Tree (All feedback) 0.057 0.000

In this paper we did not investigate the influence of each contextual fea-
ture separately as well as possibility to combine purchase probabilities coming
from different learning methods. Both should be done in our future work. The
presented approach can be applied on any domain, as long as there is some nat-
ural indicator of user engagement or preference (like purchases in e-commerce).
Thus, naturally, one possible direction of our research is to extend this approach
beyond its current e-commerce application.

Another task is to combine the contextual approach with our previous work,
e.g., on using early user feedback on lists of objects [11] and corroborate the
results in on-line experiments.

Acknowledgments. The experiments presented in this paper were done
while author was a Ph.D. student at Charles University in Prague. The work was
supported by the Czech grant P46. Supplementary materials (datasets, source
codes, results) can be found on: http://bit.ly/2dsjg6j.
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Satisfiability Modulo Theory (SMT) solvers have been recently used to build
or improve a number of tools for formal verification of C and C++ programs.
For these tools, most of verification time is typically spent on internal decisions
on satisfiability of relevant first-order formulae over bit-vectors, which inevitably
leads the tool developers to apply appropriate countermeasures, such as caching
of SMT queries. While caching is widely used in symbolic execution, where the
underlying SMT formulae are quantifier-free by construction, in control-explicit
data-symbolic model checking approach the SMT formulae to be checked for
satisfiability contain a number of universally bounded variables. In such a case,
the caching principle is rendered rather inefficient. In this paper, we introduce
a new scheme for decomposition of SMT formulae with universally bounded
variables into a data-independent sub-formula, and show that application of
caching to these sub-formulae restores some efficiency of the caching mechanism.
We illustrate efficiency of the new caching scheme on a set of examples from
the Software Verification Competition (SV-COMP) benchmark using our own
prototype implementation in the SymDIVINE model checker.
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Constructing correct-by-design systems from specifications given in linear
temporal logic (LTL) is a classical problem called LTL synthesis. The automata-
theoretic solution to this problem is to translate the LTL formula to a deterministic
automaton and solve the corresponding game on this automaton. Often, parity
automata (DPA) are used due to the efficiency of parity game solvers.

The classical way to transform LTL formulae into DPA is to first create a non-
deterministic Büchi automaton and then determinize it. Since determinization
procedures based on Safra’s construction are practically inefficient, many alterna-
tive approaches to LTL synthesis arose, trying to avoid determinization. However,
new results on translating LTL directly and efficiently into deterministic Rabin
automata (DRA) [2] open new possibilities for the automata-theoretic approach.
Consequently, we aim to efficiently transform DRA into DPA. Transformations
of deterministic automata into DPA are mostly based on appearance records and
have been presented for Muller automata [4] and Streett automata [3], implicitly
yielding a procedure for DRA. Our contribution in this paper is as follows:

– We provide an IAR construction transforming DRA to DPA, different from
[3] and specifically tailored to DRA.

– We provide optimizations applicable to all appearance records.
– We evaluate all the unoptimized and optimized versions of our IAR and the

IAR of [3] experimentally, in comparison to determinization implemented
in GOAL. Surprisingly, our method produces smaller automata than both
GOAL and the dual IAR of [3].

– We compare our approach LTL Rabinizer−−−−−−→DRA optimized IAR−−−−−−−−−→DPA to the state-
of-the-art translation of LTL to DPA by Spot 2.1 [1].
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Consider a hypergraph Hd
n = (V,E) where V = [n]d and E contains all subsets of V which lie

in a geometric line in the d-dimensional space where the set [n]d is embedded. We characterize
the structure of the group T dn of automorphisms of Hd

n. This is a generalization of Silver [?] who
characterized T 3

4 . Moreover, we consider the Colored Cube Isomorphism problem of deciding
whether for two colorings of the vertices of Hd

n there exists an automorphism of Hd
n preserving

the colors.
The hypergraph Hd

n is a board for d-dimensional version of the game Tic-tac-toe. Any position
in Tic-tac-toe can be viewed as a coloring of the hypercube by three colors: crosses, rings and
empty points. Therefore, when designing a strategy by searching the game state space it is
very useful to recognize isomorphic positions. To do so we provide the characterization of all
automorphisms of the cube. On the other hand, we show how computationally hard is to recognize
if there is an automorphism which preserves the cube coloring.

We use two basic groups of automorphisms for characterization of the group Tdn. The first
group Gd is the group of the d-dimensional hypercube. The second group Fn contains mappings
Fπ

(
[x1, . . . , xd]

)
= [π(x1), . . . , π(xd)] for all π ∈ Sn such that π(n − p + 1) = n − π(p) + 1. Note

that the group structure of Tdn is richer than only the obvious rotations and symmetries.

Theorem 1. Let n > 2. The group Tdn is generated by the elements of Rd∪Fn. The order of the
group Tdn is 2d−1+kd!k! where k = bn2 c.

The class of decisions problems GI contains all problems with a polynomial reduction to the
problem Graph Isomorphism.

Theorem 2. The problem Colored Cube Isomorphism is GI-complete.

The conference paper was accepted to Cocoon 2016 [?].

? Supported by the Centre of Excellence – Inst. for Theor. Comp. Sci. 79 (project P202/12/G061 of
GA ČR).
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The motivation of this work comes from various source areas, such as para-
metric formal verification, requirements engineering, safety analysis, or software
product lines. In these areas, the following situation often arises: We are given,
as an input, a set of configurations and a property of interest. The goal is to
compute the set of all the configurations that satisfy the given property. We call
such configurations valid. As a short example, one may imagine a system with
tunable parameters that is to be verified for correctness. The set of configura-
tions, in that case, is a set of all possible parameter values and the goal is to find
all such values that ensure the correctness of the given system. If we are given
a method to ascertain the validity of a single configuration, we could try running
the method repeatedly for each configuration to obtain the desired result. In the
case of an infinite set of configurations, this approach does not terminate, and we
get at most a partial answer. However, even if the configuration space is finite,
checking configurations one by one may be too costly. We are thus interested in
reducing the number of validity checks in the finite case.

Although such reduction might be impossible in general, we focus on prob-
lems whose configuration space is equipped with a certain structure that is pre-
served by the property of interest. This may then be exploited in order to check
a smaller number of configurations and still obtain the full answer. The desired
structure is a set of dependencies of the form: “If configuration A violates the
property then configuration B does too.” Mathematically, we can either view
such structure as a directed acyclic graph of those dependencies, or as a partial
ordering on the set of all configurations induced by this graph. Viewed as an or-
dered set, the set of all the valid configurations can be effectively represented by
the set of all the maximal valid (alternatively, minimal invalid) configurations.

We present a novel algorithm to compute such boundary elements and we
explain how this general setting applies to concistency checking of requirements.
We also give an experimental comparison with a state-of-the-art tool.

? This project has received funding from the Electronic Component Systems for Euro-
pean Leadership Joint Undertaking under grant agreement No 692474, project name
AMASS. This Joint Undertaking receives support from the European Unions Hori-
zon 2020 research and innovation programme and Spain, Czech Republic, Germany,
Sweden, Austria, Italy, United Kingdom, France
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Techniques developed in computer science for automated formal verification
are promising formal methods that have the potential to be exploited in com-
putational systems biology where biological processes are studied as dynamical
systems. Of special interest is model checking that provides a feasible methodol-
ogy to verify/refute interesting biological hypotheses. We have contributed to
this field by adapting model checking to be applicable to parametrised dynamical
systems appearing in biology [1, 2].

In our recent research, we have proposed a novel high-performance algorithm
for synthesis of interdependent parameters from CTL specifications for non-linear
dynamical systems based on coloured model checking. The method employs a
symbolic representation of sets of parameter valuations in terms of first-order
theory of the reals [4].

Moreover, we employed this approach for bifurcation analysis of parameterised
high-dimensional dynamical systems. The classical numerical and analytical
methods are typically limited to a small number of system parameters. Therefore,
in [3] we have proposed an important improvement in the use of an extended
CTL logic, a kind of a hybrid CTL augmented with direction formulae, in order
to describe various behaviour patterns, or phase portraits. In combination with
interdependent parameters synthesis algorithm this approach is able to overpass
previously mentioned limitation and to discover critical values of such parameters,
or bifurcation points, where phase portraits appear or disappear.

We applied these methods to a class of piecewise multi-affine dynamical
systems representing dynamics of biological systems with complex non-linear
behaviour involving bistability [5] or limit cycles [6].

In this presentation, we would like to give an overview of our recent results.
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We show that the Minimum Length-Bounded Cut problem can be com-
puted in linear time with respect to L and the tree-width of the input graph as
parameters.

We show a W[1]-hardness result when the parameterization is done by the
path-width only (instead of the tree-width) and that this problem does not
admit polynomial kernel when parameterized by path-width and L. We also
derive an FPT algorithm for the Minimum Length-Bounded Cut problem
when parameterized by the tree-depth. Thus showing an interesting paradigm
for this problem and parameters tree-depth and path-width.

Length bounded cuts. Let s, t ∈ V be two distinct vertices of a graph G =
(V,E) – we call them the source and the sink, respectively. We call a subset
of edges F ⊆ E of G an L-bounded cut (or L-cut for short), if the length of
the shortest path between s and t in the graph (V,E \ F ) is at least L+ 1. We
measure the length of the path by the number of its edges. In particular, we do
not require s and t to be in distinct connected components as in the standard
cut, instead we do not allow s and t to be close to each other. We call the set F
a minimum L-cut if it has the minimum size among all L-bounded cuts of the
graph G. The associated decision problem is the Minimum Length Bounded
Cut problem. Throughout the paper we denote by n the number of vertices of
input graph G.

Theorem 1. Minimal Length Bounded Cut parameterized by path-width
is W[1]-hard.

Theorem 2. Let G be a graph, denote by k treedepth of G, and s and t be two
distinct vertices of G. Now for any L ∈ N a minimum L-cut between s and t can
be found in time O

(
max{26k3 · n, nm}

)
.

The only other result of this type we are aware of, in the time of writing this,
is by Gutin et al. [2]. The Minimum Length-Bounded Cut problem is also a
problem of this kind – as Theorem 1 and Theorem 2 demonstrate.

? Research was supported by the project SVV–2016–260332, by project Kontakt
LH12095, project GAUK 1784214, and project CE-ITI P202/12/G061.

?? Results were presented during TAMC 2015 [1].
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We described a new approach to deciding satisfiability of quantified bit-vector
formulas using binary decision diagrams and approximations. The approach is
motivated by the observation that the binary decision diagram for a quantified
formula is typically significantly smaller than the diagram for the subformula
within the quantifier scope. The approach relies on the combination of syntactic
formula simplifications, tailored initial ordering of BDD variables, and using
underapproximations and overapproximations, all of which help to reduce the
size of the BDDs during the computation of the BDD corresponding to the input
formula.

The suggested approach has been implemented in the experimental open-
source SMT solver called Q3B. The experimental results show that it decides
more benchmarks from the SMT-LIB repository than state-of-the-art SMT solvers
for this theory, namely Z3 and CVC4, which solve quantified bit-vector formulas
using the quantifier instantiation. Furthermore, we compared the implemented
solver with the mentioned state-of-the art solvers on the quantified formulas pro-
duced by the symbolic model checker SymDIVINE. Again, the BDD based solver
was able to decide more queries than Z3 and CVC4. Moreover, according to the
results of the SMT competition 2016, Q3B is the best solver in the category of
quantified bit-vectors, outperforming Z3, CVC4 and Boolector.

Underapproximations used in the approach are performed by reducing the
bit-width of all existentially quantified variables. Similarly, overapproximations
are performed by reducing the bit-width of all universally quantified variables.
We describe several ways of reducing bit-width of a variable and we evaluate the
effect of each of these on the performance of the solver.

The publication with the detailed description of the approach, experimental
results, and the evaluation of all three components used in the approach was
accepted to the 19th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2016).
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