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CHAPTER 6

Creating Teaching Units for Student Inquiry

André Heck, Lukáš Másilko

6.1. Introduction

Tasks determine to a large extent how students develop mathematical thinking
abilities and become fluent in applying mathematical methods and techniques. As
Stein et al. (1996, p. 459) put it: “The mathematical tasks with which students be-
come engaged determine not only what substance they learn but also how they come to
think about, develop, use, and make sense of mathematics.” They distinguish (p. 466)
in mathematical tasks four increasing cognitive demands: (1) memorisation; (2) use
of formulas, algorithms, or procedures without attention to concepts, understanding,
or meaning; (3) use of formulas, algorithms, or procedures with connection to con-
cepts, contexts, understanding, or meaning; and (4) “doing mathematics,” including
complex mathematical thinking and reasoning activities such as making and testing
conjectures, framing problems, looking for patterns, and so on. Tasks at the highest
level of cognitive demand are complex, possibly ill-structured, and require students to
make strategic decisions, make connections between concepts and contexts, reason in
a mathematical way, and explain their thinking. In other words, student are invited
to work as a mathematician or as a professional using mathematics in her/his field.

A good and varied selection of academic tasks is especially important at univer-
sity level, where the expectation is for students to spend considerable time outside of
class studying course material and doing homework. We refer to familiar or routine
tasks that aim to increase student fluency with mathematical content and techniques
as tasks that promote procedural understanding of mathematics. When procedures
are used with connection to concepts, contexts, understanding, or meaning, or when
tasks encourage doing mathematics, then we speak of tasks focusing on conceptual un-
derstanding of mathematics. In mathematics education at university level, especially
in service teaching,1 student tasks and activities are in practice more often directed
towards procedural understanding than to conceptual understanding of mathemat-
ics and use of higher-order thinking skills (see, for example, Artigue et al., 2007).
The main goal of the PLATINUM project was to explore possibilities to shift the
balance in student learning towards conceptual understanding of mathematics. As
part of their inquiry at all levels of the three-layer model explained in Chapter 2,
PLATINUM partners formed communities of inquiry to develop teaching units for
student inquiry, to try them out in their own practice, to evaluate the use of these
units, and to document their work. In this chapter we report on this work (Intellectual
Output 3 of the project; see Section 2.5), put it in a broader perspective of inquiry

1Service teaching of mathematics is an umbrella term for teaching mathematics in higher ed-
ucation outside mathematics programmes, e.g., teaching mathematics to engineers, students in life
sciences, etc.
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into mathematics education, discuss the possible role of ICT in student inquiry, iden-
tify from the developed teaching units some general task features and guiding design
principles (including those for students with identified needs), and discuss what a
community of inquiry can achieve in practice.

6.2. Frameworks Used in PLATINUM for Designing Student Inquiry

Much research has been done focusing on task design in mathematics education.
The ICMI study 22 (Watson & Ohtani, 2015) is a very good source of information.
We distinguish three types of frameworks that are used to underpin the task design
for student inquiry:

• a grand theoretical frame (e.g., constructivism) or an intermediate-level frame
such as Realistic Mathematics Education (RME) (van den Heuvel & van Zan-
ten, 2020), the Theory of Didactical Situations (TDS) (Brousseau, 2002),
the Anthropological Theory of the Didactic (ATD) (Bosch et al., 2019), and
Commognitive Theory (Sfard, 2008), to name a few;

• a learning cycle instructional model for mathematics and science built upon
general notions about how people learn (Bransford et al., 2000; Donovan &
Bransford, 2005), such as the 5E-instructional model of Bybee et al. (2006);

• a model of processes and actions in professional practice. Examples of this
type of framework are a list of words denoting processes and actions when
mathematicians pose and solve problems (Mason, 2008), a categorisation of
tasks that encourage concept development, an identification of design princi-
ples that make teaching for conceptual understanding more effective (Swan,
2008), a mathematical questions taxonomy (Smith et al., 1996; Pointon &
Sangwin, 2003), and a modelling cycle (e.g., Blum & Leiß, 2007; Heck, 2012).

We elaborate on some of these frameworks and discuss how they played a role in the
design of teaching units by PLATINUM partners. Most of our attention is on the third
type of frameworks because they seem, in our view, closer to the world of university
lecturers and more appealing to them.

6.2.1. Use of Intermediate-Level Frames in PLATINUM. Many mathe-
matics education researchers use an intermediate-level frame such as ATD or RME to
position their developmental work. For example, partners from the Leibniz University
Hannover (LUH) use concepts from ATD, TDS, and Critical Psychology (Holzkamp,
1995, 2013) in their case study presented in Chapter 14 to analyse their teaching and
learning practice. Partners from the Borys Grinchenko Kyiv University (BGKU) refer
to RME principles when they describe in Section 8.4.1 their view on mathematical
modelling. Partners from the University of Amsterdam (UvA) also discuss the at-
tractiveness of RME principles in their case study on teaching Systems Biology (see
Chapter 12), in particular the idea to routinely invite students to explain and jus-
tify their mathematical thinking, their solution strategies, and actions in open-ended
activities. Yet they did not adopt (and explain why not) the RME-based inquiry ori-
ented instructional approach of Rasmussen and collegues (Rasmussen & Kwon, 2007),
in which emphasis is on student reinvention of mathematical concepts, on student
inscriptions and their role in the development of the mathematics, and on instructor
inquiry into student thinking.

Kuster et al. (2018) identified the following most important principles of inquiry-
oriented mathematics instruction: (1) generating student ways of reasoning, (2) build-
ing on student contributions, (3) developing a shared understanding, and (4) connect-
ing to standard mathematical language and notation. Kuster et al. (2019) developed
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an instrument for scoring a lesson along seven inquiry-oriented instructional practices.
Similarly, spidercharts have been developed as instruments within the PLATINUM
project (see Chapter 3) to facilitate project-wide thinking and communication about
activities in local communities and to promote reflection on and further elaboration
of a common vision on inquiry-based mathematics teaching and learning from the
student perspective, the teacher perspective, and the community of inquiry perspec-
tive. The spidercharts in PLATINUM are not a scoring tool, but a reflection tool for
a community of inquiry. For example, while working on a basic mathematics mod-
ule for first-year students in biomedical sciences, the UvA community of inquiry was
supported by the spidercharts in the pedagogical decision-making processes and in
discussions about suitability of RME for its design of student inquiry. At first sight it
seems attractive to use instructional activities in which students reinvent the concept
of direction field (Rasmussen & Marrongelle, 2006), Euler’s method (Kwon, 2003),
solution of linear systems of ODEs (Rasmussen & Blumenfeld, 2007), or bifurcation
diagram (Rasmussen et al., 2019; Goodchild et al., 2021), and in which students more
or less constitute the formal mathematics. But in the reality of university teaching,
the UvA partners had pragmatic reasons for rejecting the principles of guided reinven-
tion and emergent modelling in their mathematics module: limited student-teacher
contact time, insufficient availability of suitable learning spaces for small-group work,
large number of students and their differing mathematics background that would com-
plicate the reinvention and emergent modelling processes, and a mismatch with the
dominant teaching and learning culture in the discipline. Another obstacle foreseen by
UvA partners in their course design was the extent to which lecturers could elicit and
inquire into student thinking in practice, which is considered a crucial aspect of design
research and inquiry-oriented education. Guidance and monitoring small-group work
and utilising student work to promote a shared and more sophisticated understanding
of mathematics commensurate with the important mathematics concepts and conven-
tions addressed in the module was cumbersome given the layout of the tutorial rooms
and the number of students present during practice sessions.

The above objections and hesitations toward the inquiry-oriented instructional
approach can also be found amongst university lecturers toward other inquiry-based
approaches that are based on a grand theoretical or intermediate-level frame, for exam-
ple grounded on (socio-)constructivism or cultural-historical activity theory, especially
amongst lecturers involved in service teaching of mathematics. Often these lecturers
feel uncomfortable with a constructivist perspective on mathematical representations
and acts of representing. From a constructivist point of view (see, for example, Cobb
et al., 1992; Davis et al., 1990; von Glaserfeld, 1995; Jaworski, 1994), the learning
of mathematical representations should not take place in a transmission approach of
instruction, in which lecturers explain for their students the meaning of mathematical
and scientific representations and how they are to be used. Instead, informal represen-
tations created and used by individual learners during the learning process should play
a role in the route towards conventional mathematical notations. In other words, in a
constructivist perspective, both acts of representing and representations are a means
of constructing mathematical knowledge and understanding by students. University
lecturers involved in service teaching often feel that there is too little space in the
already overladen mathematics courses for a constructivist approach, which is more
time-consuming than traditional instruction. Often they do not have the power to
reduce the mathematical content of the courses in order to make space for student in-
quiry activities, or they lack personal experience with a constructivist approach. They
may even have a limited view of grand theoretical and intermediate-level frames, and

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-3


✐
✐

“output” — 2022/1/10 — 15:38 — page 96 — #112 ✐
✐

✐
✐

✐
✐

96 HECK, MÁSILKO

are unaware that these frames leave space for various approaches to student inquiry
with respect to intellectual sophistication and to student participation or locus of
control (cf., Wenning, 2005, in the context of science education).

In PLATINUM we distinguish student inquiry on the following levels, ranging
from rather closed to completely open inquiry work:

• limited inquiry, in which students follow directions and make sure that their
results match the requirements set in advance;

• structured inquiry, with no predetermined answers but conclusions solely
based on students’ investigation;

• guided inquiry, with no predetermined method but students having to deter-
mine how to investigate the problem;

• open inquiry, with no predetermined questions but students proposing and
pursuing their own questions;

Under the assumption that the sum of the levels of teacher and student participation
in each of the above inquiry types is roughly the same, the above types of student
inquiry are ordered with increasing student participation and independence (locus of
control) and with decreasing degree of teacher’s guidance. Many lecturers are willing
to move students in a course from a teacher-dependent to a more teacher-free and
independent role, i.e., to shift the locus of control gradually from teacher to student,
but are afraid that a course is too short for doing this. Promotion of inquiry-based
mathematics education often boils down to breaking barriers like the ones mentioned.

6.2.2. Use of Learning Cycle Models in PLATINUM. PLATINUM part-
ners have also used learning cycle models, not only to design their student activities but
also to analyse how these activities actually went in classroom practice. For example,
to compare the design of their inquiry task with the student actions in class, partners
from the Brno University of Technology (BUT) refer in Section 8.4.2 to the model
of Pedaste et al. (2015) for IBME activities, consisting of the phases Orientation—
Conceptualisation—Investigation—Conclusion—Discussion, and to a simple 4-stage
modelling cycle, consisting of Understanding task—Establishing model—Using mathe-
matics—Explaining results.

Quite popular in the PLATINUM project has also been the 5E-instructional model
of Bybee et al. (2006) and the 7E-model of Eisenkraft (2003) for characterising tasks
in a teaching unit for student inquiry.2 The 5E-model requires instruction to in-
clude the following phases: engage, explore, explain, elaborate, and evaluate. The
UvA partners have, for example, used the 5E-model to characterise the task sequence
about enzymatic kinetics developed in their case study presented in Chapter 12 (see
Table 12.1, p. 224). The 7E-model expands the Engage phase into two components—–
Elicit and Engage. Similarly, the 7E model expands the two phases of Elaborate and
Evaluate into three components—–Elaborate, Evaluate, and Extend. Partners of the
Complutense University of Madrid (UCM) have used the 7E model in their documen-
tation of the teaching unit about matrix factorisation, which is part of the case study
presented in Chapter 16, to typify the student activities (see Table 6.1).

The above examples illustrate that a learning cycle model not only provides lec-
turers and educators with a documentation and assessment tool that they could use
over time to both tell the story of their teaching and the learning of their students in
a particular setting, but also supports lecturers and educators in developing learning
experiences for their students. The latter use of a learning cycle model fits very well

2Maybe the popularity of the 5E- and 7E-model originates from the inclusion of these models in
a working document used in the PLATINUM project to help partners document their work.
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Part Activity E-Emphasis

Task 1 Apply the Gaussian elimination method to compute the

LU factorisation of matrices in a special class of matrices

Elicit

Task 1 Propose a conjecture Engage

Task 2 Check the conjecture: does it hold for other classes of matrices Explore

Task 2 Modify the conjecture Engage

Task 3 Find a general result Explore

Discussion Each group makes their results public Explain

Discussion Groups assess, accept or criticise the results and opinions of

other groups

Elaborate,

Extend

Table 6.1. Characterisation of student activities in the matrix fac-
torisation teaching unit of the UCM partners, presented in Chap-
ter 16, via the 7E-instruction model of Eisenkraft (2003).

with the design of structured or guided inquiry. Then an activity sequence contains all
phases in the learning cycle model, which are (repeatedly) divided over the activities.
Use of a cyclic instructional model is intentional because it emphasises the role of the
model as a formative documentation and assessment instrument that supports lectur-
ers in designing learning experiences for their students by reflecting on where their
students have been, what they have learned, and what they might do next. It also
reflects that student inquiry is ideally a cyclic process with more than one iteration.

6.2.3. Using Models of Processes and Actions in Professional Practice.
There are many different definitions and interpretations of the term inquiry-based
mathematics education (IBME). All university lecturers have an intuitive feel for what
is meant by this term and whether a clear definition is given or not, they probably
recognise inquiry-based teaching and learning of mathematics. This is especially true
for the following conceptualisation of IBME formulated by Dorier and Maaß (2020),
in which active engagement of students with mathematics is central:

Inquiry-based mathematics education (IBME) often refers to a student-centred para-

digm of teaching mathematics and science, in which students are invited to work in

ways similar to how mathematicians and scientists work. This means they have to

observe phenomena, ask questions, look for mathematical and scientific ways of how

to answer these questions (like carrying out experiments, systematically controlling

variables, drawing diagrams, calculating, looking for patterns and relationships, and

making conjectures and generalisations), interpret and evaluate their solutions, and

communicate and discuss their solutions effectively.

What does active engagement with mathematics at university level mean?
Mason (2002) provides a list of words he believes to denote processes and actions
when mathematicians pose and solve mathematical problems. He distinguishes the
following innate powers employed by practitioners when they work on mathematics:
“exemplifying, specialising, completing, deleting, correcting, comparing, sorting, or-
ganising, changing, varying, reversing, altering, generalising, conjecturing, explaining,
justifying, verifying, convincing, refuting, and depicting” (p. 125). Mason (2002),
Mason et al. (2010), and Mason and Johnston-Wilder (2006) discuss in detail how

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-16
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the design of student tasks might benefit from using these words to give students a
richer experience of aspects of mathematical thinking. The cited authors are of opin-
ion that mathematical thinking tasks should be rich tasks that encourage students
to be assertive and active rather than taking a passive approach to learning: tasks
should enable students to encounter significant mathematical ideas and concepts and
to discuss them with peers, allow them to use their ‘natural’ thinking powers to work
on mathematics, involve various ways of thinking, engage them in the use of precise
mathematical language, and be appropriately challenging. The listed processes and
actions taken from mathematical practice are expected to help designers of rich math-
ematical tasks. Mason and colleagues provide guidance to underpin this expectation
in the form of a variety of tactics. An example of how this guidance helps in prac-
tice can be found in the paper of Breen and O’Shea (2018) in which they select the
following six types of tasks that would engage students in the practices and habits of
minds of research mathematicians: (1) generating examples, (2) analysing reasoning,
(3) evaluating mathematical statements, (4) conjecturing and/or generalising, (5) vis-
ualising, and (6) using definitions. PLATINUM partners have also used identified
tactics, albeit sometimes implicitly, to (re)design student tasks and activities that
foster conceptual understanding of students and promote an inquiring atmosphere.
Some examples of tasks developed and used are shown below; more examples will be
discussed in Section 6.4.

But before going to examples we draw attention to two other frameworks that
may help lecturers create tasks that foster and assess aspects of mathematical think-
ing. Swan (2008) lists the following five task types that encourage concept development
at secondary school level: (1) classifying mathematical objects, (2) interpreting mul-
tiple representations, (3) evaluating mathematical statements, (4) creating problems,
and (5) analysing reasoning and solutions. These task types encourage students to
use their innate powers of organising, classifying, characterising, examining, compar-
ing, verifying, interpreting, evaluating, creating, expressing, analysing, and reflecting.
There is no reason to believe that these task types would not serve the same purpose
at undergraduate level. In addition, Swan (2008) lists the following design principles
to make teaching for conceptual understanding more effective in a classroom setting:

• use rich, collaborative tasks;
• develop mathematical language through communicative activities;
• build on the knowledge learners already have;
• confront difficulties rather than seek to avoid or pre-empt them;
• expose and discuss common misconceptions and other surprising phenomena;
• use higher-order questions;
• make appropriate use of whole class interactive teaching, individual work and
cooperative small group work;

• encourage reasoning rather than ‘answer getting;’
• create connections between topics both within and beyond mathematics;
• recognise both what has been learned and also how it has been learned.

Many of these principles seem valuable in a university setting as well (cf., Breen &
O’Shea, 2018), but some of them may be difficult to realise in lectures to large groups
of students. However, the principles seem applicable for tutorials with smaller groups
of student and for the design of homework tasks.

Based on an analysis of what undergraduate students are in reality asked to do
in course work and examination questions, Pointon and Sangwin (2003) identify eight
classes of mathematical questions and tasks, listed in Table 6.2. In the four classes on
the left-hand side, students are asked to apply knowledge in bounded situations. The
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classes on the right-hand side require higher-order mathematical thinking skills. The
authors notice that the latter tasks are hardly asked in reality. In PLATINUM, we
regret this because these types of tasks probably promote conceptual understanding
of mathematics more than the other ones. Adding more questions of this type is
expected to improve the balance between procedural and conceptional learning of
mathematics. This also positions the frameworks discussed in this section: whereas
Pointon and Sangwin (2003) categorise questions and tasks that are actually used
in school and university practice, Swan (2008) and Mason (2002) describe processes
and actions to which students should be encouraged in their opinion. There are also
similarities between the frameworks: ‘construct example/instance’ in Pointon and
Sangwin’s taxonomy is more or less the same as ‘exemplifing’ and ‘specialising’ in
Mason’s framework.

1. Factual recall 5. Prove, show, justify

(general argument)

2. Carry out a routine calculation

or algorithm

6. Extend a concept

3. Classify some mathematical object 7. Construct example/instance

4. Interpret situation or answer 8. Criticize a fallacy

Table 6.2. Pointon and Sangwin (2003) task classification scheme.

Let us continue now with some tasks and activities that have been developed by
PLATINUM partners to foster conceptual understanding of students and promote an
inquiring atmosphere. These examples have also been used at PLATINUM project
meetings to discuss what inquiry-based mathematics education could mean and how
student inquiry could be promoted by mathematical tasks.

The first two problems (Figure 6.1) come from partners at the University of Agder
(UiA) and is about the use of nonstandard problems in an ordinary differential equa-
tions course (see also Rogovchenko et al., 2018, and Chapter 11). These are unusual
problems for which “students have no algorithm, well-rehearsed procedure, or previ-
ously demonstrated process to follow.”

Sample problem 1

a) Verify that y(x) =
2

x
+

C1

x2
is the general solution of a differential equation

x2 y′ + 2xy = 0

b) Show that both initial equations y(1) = 1 and y(−1) = −3 result in an identical
particular solutions. Does this fact violate the Existence and Uniqueness Theorem?
Explain your answer.

Sample problem 2

a) Verify that y(x) = C1 + C2 x
2 is the general solution of a differential equation

x y′′ − y′ = 0

b) Explain why there exists no particular solution of the above equation satisfying
initial conditions y(0) = 0; y′(0) = 1.

c) Suggest different initial conditions for this differential equation so that there will
exist exactly one particular solution of a new initial value problem. Motivate your
choice.

Figure 6.1. UiA examples of nonstandard ODE tasks.

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-11
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The following words from Mason’s framework (2002) can be recognised: verify
(1a, 1b, 2a), explain (1b, 2b), and specialise (verbalised in problem 2b as “Does this
fact violate . . . ” and in problem 1c as “Suggest different initial conditions such that
. . . ”). In terms of Swan’s framework (2008), students are in these two problems mainly
invited to evaluate mathematical statements. In terms of the taxonomy of Pointon
and Sangwin (2003), students are asked to interpret a situation or answer (1a, 2a, 2b),
to show/justify (1b), and to construct an example/instance (2c).

Partners from the University of Amsterdam (UvA) have used the tactic of turning
an existing textbook question into a more inquiry-based question (cf., Dorée, 2017)
for several problems in an analysis course for first-year mathematics students. Here
we only discuss the following original problem (Ross, 2013, Exercise 14.7):

Prove that if
∑

an is a convergent series of nonnegative numbers and p > 1,
then

∑
ap
n converges.

Past experience of tutorial lecturers is that this is a fairly difficult exercise for students
unfamiliar with the subject: you need to treat small and large values of n separately.
Many students do not get this idea and are already lost at the start of the proof.
In order to guide students, the new exercise (Figure 6.2) starts with the special case
p = 2 and students are asked to consider the magnitude of the squares compared to
the original sequence. Once they understand this case, they can use it to prove the
specialised statement, and hereafter generalise towards arbitrary p, including the case
0 < p < 1.

Sample problem 3

Let
∑

an is a convergent series of nonnegative numbers.

a) For how many values of n can we have a2
n > an?

b) Show that
∑

a2
n converges as well.

c) What can you say about ap
n for p ∈ (0,∞)?

Figure 6.2. UvA example from an elementary analysis course.

In terms of Mason’s framework (2002), the task designers first specialise the origi-
nal statement to the case p = 2 in the hope and expectation that students can hereafter
see the general approach to proof from the particular case (specialising to help gener-
alising). Instead of asking to prove a theorem, they ask students in the third subtask
to make a conjecture for the general case with p ∈ (0,∞). Of course students must
justify their statement. In terms of Swan’s framework (2008), students are invited in
the revised exercise to evaluate mathematical statements and to analyse reasoning and
solutions (actually analysing their own reasoning in the special case). In terms of the
taxonomy of Pointon and Sangwin (2003), students interpret a situation or answers
(3a) in the special case p = 2 and prove the statement in this special situation (3b)
before they extend this to the general case (3c).

The last two examples of inquiry-based tasks (Figure 6.3), which illustrate the use
of models of processs and actions, are taken from instructional materials of partners
at Loughborough University (LU) for first-year materials engineering students. The
first subtask of Problem 4 is designed for use in a lecture, but all other subtasks are
considered more appropriate for tutorials, preferably in the form of small group work.
The computer environment GeoGebra3 allows students to explore mathematical sit-
uations, in particular to explore functions using multiple representations.

Because many competencies are addressed in Problem 4 it comes to no surprise
that, in terms of Mason’s framework (2002), many powers of students are triggered in

3www.geogebra.org

https://www.geogebra.org
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Sample problem 4

a) Consider the function f(x) = x2 + 2x (x is real). Give an equation of a line that
intersects the graph of this function (i) Twice (ii) Once (iii) Never.

b) If we have the function f(x) = a x2 + b x+ c, what can you say about lines which
intersect this function twice?

c) Write down equations for three straight lines and draw them in GeoGebra. Find a
(quadratic) function such that the graph of the function cuts one of your lines twice,
one of them only once, and the third not at all and show the result in GeoGebra.

d) Repeat for three different lines (what does it mean to be different?)

Sample problem 5

Use sliders in GeoGebra to determine
which of the graphs on the right could rep-
resent the function

y = a x4 + b x3 + c x2 + d x+ e

Here a, b, c, d and e are real numbers, and
a ̸= 0. Explain your thinking.

Figure 6.3. LU examples of inquiry-based tasks using GeoGebra.

these subtasks: exemplifying, specialising, generalising, comparing, organising, vary-
ing, conjecturing, explaining, justifying, verifying, imagining, and depicting. This is
typical for an inquiry-based task. Mason and Johnston-Wilder (2006) actually rec-
ommend the use of a ‘mixed economy’ of tasks in order to realise as many goals as
possible because no single strategy or task type has proved to be universally successful
in developing mathematical thinking. In terms of Swan’s framework (2008), students
are invited to classify mathematical objects (4b), to interpret multiple representations
(4a, 4c, 4d), and to evaluate (their own) mathematical statements (4b). In terms of
the taxonomy of Pointon and Sangwin (2003), students classify some mathematical
object(4b), interpret a situation or answer (4a), show and justify outcomes(4c, 4d),
and construct instances/examples (4a,4c,4d).

6.3. Documentation of Inquiry Tasks in PLATINUM

Problem 5, taken from (Hughes-Hallett et al., 2005, p. 47), is a guided inquiry
task designed with the intention that students use GeoGebra to experiment with
coefficients in equations and scales on axes to gain insights into mathematical re-
lationships and that lecturers/teaching assistants circulate among groups observing
activity, encouraging work on tasks, probing students’ mathematical thinking, and
discussing students’ ideas. In Mason’s framework (2002), the tactic ‘say what you see’
is expected to help students make progress while they are (hopefully intentionally)
manipulating sliders in order to get a sense of what is going on then in terms of the
graphic representation of the polynomial and over time be able to articulate this sense
in a mathematical way. This task is not meant to be a random exploration because
students are asked to explain their thinking during the classification process of which
graph can be constructed from a fourth degree polynomial function. Explanation
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works best, especially for the person who explains, if there is someone else to explain
to. This is why this task is actually meant for group work, even though the task itself
does not demand it, and that students give feedback to their peers, lecturers and/or
teaching assistants. This makes a student task distinct from a student activity: like
Mason and Johnston-Wilder (2006) we consider in this chapter a task as being what
students are asked to do, whereas an activity means what students actually do in their
interaction with peers, lecturers, resources, environment, and so on around the task.

A mathematical task initiates mathematical activity of a student: it sets the
direction of the student thinking and acting, influences the level of student engagement,
and determines to a large extent what a student learns. However, a task is actually
no more than a means to steer a student toward meaningful learning and practising
of mathematics. There is no guarantee that a student will work as planned by the
task designer and achieve the intended learning outcomes. Mason (2002, p.105) uses
the following words to express the importance of careful task design and that the task
itself does not automatically lead to the intended mathematical activity of students
and/or the realisation of the set pedagogic purpose:

In a sense, all teaching comes down to constructing tasks for students, because most
students believe (however implicitly) that their job as a student is to complete the
tasks they are set, including attending sessions and sitting examinations. This puts
a considerable burden on the lecturer to construct tasks from which students actually
learn.

Rephrasing Watson et al. (2013, p. 10), tasks generate student activity which affords
opportunity to encounter mathematical concepts, ideas, strategies, methods and tech-
niques, to use and develop mathematical thinking and modes of inquiry, and to form
a view of mathematics. In the PLATINUM project we are in particular interested in
the design and use of tasks and activities that promote conceptual understanding of
mathematics through student inquiry. The objective of Intellectual Output 3 in this
Erasmus+ project is to

• develop a collection of teaching units that promote mathematics conceptual
learning through an inquiry approach;

• synthesise working models from the designs of teaching units;
• use teaching units in specific regular courses and to collect data about their
use;

• explore possibilities to make teaching units accessible for students with iden-
tified needs; and

• package and present teaching units for a wide international audience of teach-
ers, teacher trainers, and educators with an interest in IBME.

What is the meaning of teaching unit within the PLATINUM project? First we
note that student inquiry is not necessarily restricted to a single event with a single
task, perhaps divided in subtasks. Just like substasks in a single task, the earlier tasks
in a task sequence are meant to provide students experiences that scaffold them in the
solution of later tasks, allowing them to engage in more sophisticated mathematics that
would otherwise not have been possible. This is certainly important for students who
are not yet well trained in mathematical fundamentals, still need to learn mathemat-
ical concepts relevant for a student inquiry, and can benefit from support of lecturers
and task designers to establish this mathematical grounding. Being aware that bache-
lor students most likely do not have the mathematical experience to ask the questions
and follow the directions that lecturers of mathematics spontaneously engage with,
PLATINUM partners have been trying to stimulate inquiry for students while they
learn the basics of mathematics in calculus, linear algebra, and so on. This cannot
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be achieved in a single task, but requires a teaching and learning path with multiple
tasks. Herein not only the task sequence matters, but also the intended mathemati-
cal activity, and the pedagogic purpose. In a PLATINUM teaching unit these three
aspects come together and are documented to inform others interested in the student
inquiry or lecturers who use the teaching unit, learn from this use, and try to improve
it. For the task design phase this resembles the notion of a hypothetical learning
trajectory introduced by Simon (1995), which is “made up of three components: the
learning goal that defines the direction, the learning activities, and the hypothetical
learning processes–a prediction of how the students’ thinking and understanding will
evolve in the context of the learning activities” (p. 136). In developmental research,
a hypothetical learning trajectory is cyclically adapted and improved on the basis of
experiences with the trajectory in teaching practice. This is the approach that most
communities of inquiry at the PLATINUM partner universities have chosen and that
they describe in more detail in their case studies in Part 3 of this book.

The work done by lecturers in the PLATINUM project also illustrates the impor-
tant role they play in the design of teaching units as inquirers who explore

• the kinds of tasks that engage students and promote mathematical inquiry;
• ways of organising the learning situation that enable inquiry activity; and
• the many issues and tensions that arise related to the discipline, classroom,
colleagues, and educational system;

and who reflect on what occurs in practice with feedback to future action. An inquiry
cycle of teaching adopted from (Jaworski, 2015) in PLATINUM to characterise the
work of lecturers-as-inquirers in the design of teaching units is shown in Figure 6.4.

Figure 6.4. An inquiry cycle used in PLATINUM for the design of
teaching units.

The three-layer model of inquiry outlined in Chapter 2 (see also Jaworski, 2019)
distinguishes the following three forms of inquiry practice that involve students, lec-
turers and educators:

• Inquiry in mathematics : university students learning mathematics through
exploration in tasks and problems in classrooms, lectures and tutorials; lec-
turers using inquiry as a tool to promote student learning of mathematics;

• Inquiry in mathematics teaching : lecturers using inquiry to explore the design
and implementation of tasks, problems and activity in classrooms; educators
using inquiry as a tool to help lecturers develop teaching;

• Developmental research inquiry : lecturers and educators researching the pro-
cesses of using inquiry in mathematics and in the teaching of mathematics.

This is too much inquiry work for a single person to do professionally and too hard
to maintain under pressure of other job obligations. This is why the notion of com-
munity of inquiry (CoI) has been adopted in the PLATINUM project, as discussed in

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-2
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Part 1. By working together in a community, each might learn something about the
world of the others, and equally important might learn something more about his or
her own world. Belonging to a CoI also motivates lecturers to document their inquiry
activity, and in particular the design and use of teaching units. Documentation is
not only useful for the lecturer, but also for the communities of inquiry to which s/he
belongs. No demands or constraints have been set within the PLATINUM project
for the documentation of teaching units. Communities of inquiry were only given a
template with aspects to which they could pay attention in the documentation and
some concrete examples of documentation written at an early stage by the UvA CoI.
The main reason for this freedom in documenting the teaching units, but still pro-
viding a template for guidance has been that many similarities and differences were
identified amongst the communities of inquiry concerning ambitions/scope, study pro-
grammes and target groups, mathematical concepts/contents, envisioned use of digital
technology, and planning of tasks and timeline. Shared interests and goals of part-
ners were in improving the learning of mathematics in relevant contexts, increasing
authenticity in student activities (includes use of digital technology), improving stu-
dents’ understanding of mathematical concepts, methods and techniques and their
roles in applications, introducing inquiry-based activities in mathematics courses, and
in innovating instruction (e.g., to increase student motivation and engagement). Some
partners were thinking of modifying existing courses (UiA, multivariable calculus;
LUH, discrete mathematics) or starting from scratch new courses (UvA, basic mathe-
matics for biomedical sciences, analysis of neural signals), while others were planning
to modify units/topics within existing courses to make them more inquiry-based (e.g.,
BGKU, sequences and series; BUT, complex functions; LU, complex numbers; MU,
optimisation; UCM, special forms of matrices). Most plans were made for bachelor
study programmes with quite often large numbers of students participating in the
pedagogic cases (typical for programmes in engineering, economy, and life sciences),
but there were also plans presented for courses with a small number of master stu-
dents (e.g., in pre-service teaching training). It turned out that there was a large
variety in mathematical concepts treated in the pedagogic case ranging from com-
plex functions (BUT), complex numbers (LU), basics of discrete mathematics (LUH),
differential equations (MU, UCM, UiA, UvA), logic (UCM), mathematical modelling
(BGKU, UiA, BUT), matrix theory (UvA, UCM), multivariable calculus (UiA, UvA),
sequence, series and limit (BGKU, UvA) to statistics/regression (UCM, BGKU). Be-
sides virtual learning environments (Moodle, Canvas, . . . ) and smartboards, beam-
ers, voting systems, and so on, many different mathematical software environments
(mostly mainstream software for higher education) were envisioned to be used by stu-
dents in their work with the developed teaching units, ranging from Autograph4

(LU), Excel (BGKU), GeoGebra5 (LU, MU, UvA), Maple (UCM, UiA, BUT),
Mathcad (BGKU), Mathematica/Wolfram Alpha (BUT, BGKU), MATLAB6

(UCM, UvA), Maude7 (UCM), Rstudio8 (UCM, UvA) to SOWISO9 (UvA). We
actually consider the variety of pedagogic cases as a strong point of the PLATINUM
project because in this way inquiry-based mathematics education could be explored
in various university teaching practices.

4https://completemaths.com/autograph
5www.geogebra.org
6www.mathworks.com
7doi.org/10.1016/j.jlamp.2019.100497
8www.rstudio.com
9www.sowiso.com

https://completemaths.com/autograph
https://www.geogebra.org
https://www.mathworks.com
https://doi.org/10.1016/j.jlamp.2019.100497
https://www.rstudio.com
https://www.sowiso.com
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Each PLATINUM teaching unit has been built around one mathematical topic,
is designed for student inquiry, and is used in higher education classroom practice.
These teaching units serve as exemplary materials for mathematics lecturers and for
instructors in professionalisation programmes to experience inquiry-based mathemat-
ics education (IBME) at university level and to inspire further development of IBME.
The documentation of each teaching unit consists of (1) information for lecturers,
(2) information about the learning activities, and (3) the worksheets and files used
in the classroom, plus supplementary material. Some items in the information for
lecturers are:

• Unit description: a short description of the unit about its subject matter
and organisation, the student level, expected prior knowledge, the significant
mathematical concepts and essential questions addressed, the course and
context in which it has been used in HE practice, and the estimated duration;

• IBME character of the teaching unit : the kind of student inquiry that is
applied and the addressed inquiry abilities;

• Technological Pedagogical Content Knowledge (TPACK): the common stu-
dents’ difficulties and alternative conceptions that have been identified by
mathematics education research and/or by lecturers in higher educational
practice, and the role of ICT in the teaching unit;

• Lecturers’ experiences in the teaching practice : a short reflection about its use
within HE classroom practice (which expectations were met or not, challenges
encountered in the implementation, students’ reactions, . . . ).

Information about the learning activities in a teaching unit consists of short descrip-
tions of learning objectives, main concepts and essential questions, envisioned student
engagement in the construction of conceptual understanding, and of tool use for each
learning activity. The third part of the documentation of a teaching unit consists of

• student tasks and worksheets, in source format (Word, LATEX, . . . ) and in
PDF format;

• auxiliary files such as data files, software-specific files, simulation files, as-
sessment sheets, reference materials, and so on; and

• supplementary files, for example, more detailed notes about the design of the
unit and the activities, classroom experiences, related narratives, etc.

The template for documenting a teaching unit for student inquiry and all documented
PLATINUM teaching units can be found in the website of this Erasmus+ project.

6.4. Examples of Inquiry Tasks Developed and Used in PLATINUM

In this section we present in detail three examples of inquiry-based tasks devel-
oped and used in PLATINUM. They are selected to represent typical designs and
approaches of student inquiry that can be used when teaching mathematics to first-
year undergraduates.

6.4.1. Exploring Data-Driven Numerical Differentiation. This example
is taken from the Basic Mathematics Module for Biomedical Sciences developed by
the UvA partners. The entire module, discussed in more detail in Chapter 12, can
be seen as a learning trajectory to introduce Systems Biology to first-year students of
biomedical sciences. In Systems Biology, biological processes of change are modelled
by differential equations and values of parameters in these models are estimated by
comparing modelling results with measured data. But in order to be able to do this
estimation one must be able to compute values of derivatives of the modelled quantity.
Students investigate early in module how to compute the numerical data. First they

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
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are challenged in a lecture to form small groups of two or three students and come up
themselves with ideas how to do this (they had to suggest at least two possibilities).
The task shown in Figure 6.5 is used for that purpose.

Given are the following values of a function y(t) in the neighbourhood of t = 1:

t 0.7 0.8 1.0 1.1 1.2

y(t) 0.741 0.819 1.000 1.105 1.221

What is the best approximation of y′(1)?
(exact answer = 1 because the used function is y(t) = et−1)

Try several methods and compare the results with each other.

Figure 6.5. An inquiry task used in a lecture.

The lecture part of the teaching unit, with the invitation to compute a derivative
at a point on the basis of few surrounding data points, can be characterised as guided
inquiry, meaning that there is no predetermined method, but that students must
determine how to investigate the problem and find answers to the question raised
by the lecturer. By raising the question in a classroom discussion, the students are
expected to be intrigued and tuned in on the exploration of mathematical methods.
Preferably, they do not do this individually but with peers. The goal is that students
experience that by talking about mathematics with each other, their own thinking
becomes deeper and fruitful.

Numerical differentiation is a subject that is suitable for a more open inquiry
approach when students are familiar with the concepts of a derivative at a point,
tangent line, and difference quotient as approximation of a derivative at a point in the
domain of some mathematical function. One might expect that they can then indeed
come up with the forward finite difference as a numerical approximation of a derivative
at a point. This seems a good starting point to let students discover other ways to
numerically approximate a slope at some point. Students are invited to discuss for
about 20 minutes possible approaches with peers in small groups. Methods and results
students come up with are then discussed in classroom: it is expected that they can
propose a backward finite difference method and a combination of the forward and
backward difference method. The discussion offers the opportunity to pay attention
to what underpins mathematical methods and why it is common in mathematics to
look for alternative methods and techniques for solving the same problem and to
explore what works best and under what conditions. It is important that there are
many possible methods because inquiry means asking questions and seeking answers,
raising follow-up questions and seeking more answers, recognising possibilities, explore
options, discuss pros and cons, and so on. There should not be an early end point in
student inquiry and in the discussion about mathematical methods.

After the lecture, students implement their methods in Rstudio during a prac-
tice session in order to further explore the numerical methods regarding accuracy,
efficiency, coping with noise in real data, and so on. The tutorial in which students
implement standard finite difference methods for numerical differentiation and explore
the advantages and limitations of the methods is an example of structured inquiry,
meaning that students follow more or less directions to implement 2-point and 3-point
difference methods and set up a numerical experiment to explore by example which
method gives better results with data that are noisy. In Table 6.3 we typify these
student activities in terms of the 7E learning cycle of student inquiry.
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Assignment Activity E-Emphasis

1. Plotting a function Elicit

2. Plotting a function and its derivative in one diagram Elicit

3. Implementing the 2-points and 3-points numerical derivative Engage

4. Exploring the effect of step size and data noise on numerical

differentiation

Explore

Table 6.3. Characterisation of student activities in the numerical
differentiation practice session in the teaching unit of UvA partners
via the 7E-instruction model of Eisenkraft (2003).

At completion of the teaching unit, students are expected to have strengthened
their abilities to

• talk about and work with the concept of function when it is merely presented
in the form of function values;

• understand why one would be interested in a numerical derivative;
• compute numerically the rate of change of a quantity when only data are
given instead of a formula;

• carry out computations of numerical derivatives in Rstudio;
• develop investigations (numerical experiments) in order to inspect and ex-
plain the accuracy and efficiency of numerical differentiation methods; and

• think more critically about mathematical methods and techniques.

These abilities contribute to what Goodchild et al. (2021) call a ‘critical stance’ toward
learning and teaching of mathematics, which is complementary to critical alignment.
The notion of critical stance is according to these authors distilled into three compo-
nents: awareness, self-evaluation, and agency:

Stance, we assert, is a mode of ‘being’ an attitude, perspective or disposition. Critical

stance is dependent upon the student’s awareness, the information and experience they

possess to reach an informed judgment about an issue, and recognition of their agency

to make a difference. Critical alignment to a practice relates to a person’s relation-

ship with the practice. On the other hand, critical stance also relates to the personal

characteristics and attributes that the person brings to their participation.

In the student activities described in this example the designers try to give students
opportunities for critical awareness and reflection on one’s own experience, meanings,
and knowing. By letting students come up themselves with various methods for com-
puting a numerical derivative and explore the effectiveness of various methods they
can recognise that one method is from mathematical point of view more sophisticated
and effective than another, and that one can be on the one hand critical about math-
ematical methods but on the other hand have agency to change or try-out things in
investigations on the basis of own reflection and evaluation of experiences.

6.4.2. Exploring Properties and Rules of Probability. The following ex-
ample is again a small teaching unit for use in a lecture and aimed at steering students
away from passive listening to the lecturer toward active learning via hands-on/brains-
on activities. It comes from partners at Masaryk University (MU), who developed it
for a statistics course in the first-year study programme of Business and Economics.

Students work for about half an hour in small groups during a lecture. They use
an A4 sheet with all possible outcomes of a roll with two dice (actually four copies of
Figure 6.6 are used in the worksheet shown in Figure 6.7) to carry out short inquiry
tasks and they formulate their findings and conclusions.
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Figure 6.6. A dice sheet showing all outcomes of a roll with two
dice. The sheet is used by MU partners in a teaching unit about
properties and rules of probability.

Based on the first task sequence with the
solution sheet to the right, try to replace the
question mark symbol in the following rela-
tionships.

(i) P (A) + P (A′) =?
(ii) If A1 ⊂ A2, then P (A1) ? P (A2)

Take inspiration, for example, from
events A and D.

(iii) If A1)∩A2 = ∅, then P (A1∪A2) =?
(iv) If A1) ∩A2 ̸= ∅, then

P (A1∪A2) =? Take inspiration, for
example, from events A and C.

(v) P (A1 ∪A2 ∪A3) =
P (A1)+P (A2)+P (A3)−?−?−?+?
Take inspiration, for example, from
events C, E and H.

Figure 6.7. Task sequences for students to conjecture rules of prob-
ability on the basis of results of a sample problem situation.

The tasks introduce properties and rules of probability. But instead of stating
the rules and using them in an application, the MU partners chose to have a set of
introductory tasks that help students conjecture rules of probability. Although these
conjectures are made on the basis of one concrete situation, the drawing of two dice,
it is hoped and expected that students start to understand that such examples are
common in mathematical investigations to understand problem situations and come up
with solutions that work in other situations as well. According to Mason’s framework
(2002) this process means that specialisation is often needed to make generalisation
possible.

The student activity consists of two parts: firstly, students determine the sample
space of all possible outcomes for the following events in rolling two dice.

(A) The sum of dots in a roll equals 10;
(B) The sum of dots in a roll differs from 10;
(C) Each dice rolled has the same number of dots;
(D) Each dice rolled is 5;
(E) At least the roll of one of the dice is 1;
(F) The sum of the dots in a roll equals 10 or at least one dice rolled is 1;



✐
✐

“output” — 2022/1/10 — 15:38 — page 109 — #125 ✐
✐

✐
✐

✐
✐

6.4. EXAMPLES OF INQUIRY TASKS DEVELOPED AND USED IN PLATINUM 109

(G) The sum of the dots in a roll equals 10 or each dice rolled has the same
number of dots;

(H) The sum of the dots in a roll is less than 5;
(I) The sum of the dots in a roll is less than 5, or each dice rolled has the same

number of dots, or at least one dice rolled is 1.

Hereafter students get the task sequence shown in Figure 6.7, in which they must
conjecture basic probability formulas and underpin their conjectures.

This student work is finished with a whole classroom discussion of the proposed
conjectures. The social aspect of learning and doing mathematics is considered im-
portant for students to adjust their view on mathematical inquiry.

6.4.3. Complex Number Arithmetic. The following example is part of a
teaching unit for small-group work on complex numbers, which comes from a mathe-
matics module in the Foundation Studies programme developed by partners at
Loughborough University (LU) and is described in more detail in the case study of
Chapter 15. Whereas traditional instruction often starts with specifying the calcu-
lation rules of complex numbers and illustrates this with examples using algebraic
representations, the designers of this task have chosen to apply reverse-engineering
of such questions and use the mathematics software tool Autograph10 for helping
students in tutorial sessions to explore complex number arithmetic in a geometric
perspective and connect geometric insights with algebraic manipulation. The whole
teaching unit, created together with student partners (Treffert-Thomas et al., 2019),
consists of 6 tasks: (1) addition, (2) subtraction, and (4) multiplication of complex
numbers, (4) complex conjugate of a complex number, and (5) squaring and (6) cubing
a complex number. Here we use the original Task 1, shown in Figure 6.8, to exemplify
the more general ideas of the task designers. The adaptation of this task to make it
more suitable for students with identified needs will be discussed in Section 6.7.

In this task students see three complex numbers on the computer screen, labelled
z1, z2 and z, and one of the complex numbers (z1) is specified in the question text.
They must figure out what happens when they move z2 and in this way try to give
a geometric interpretation of the relationships between the shown complex numbers.
No reference is made here to calculations or algebraic manipulations. Autograph is
used as a tool to visualise the mathematical relationship, but it is left up to students
to make the link. A reverse engineering approach is used in this task, meaning that
instead of asking the straightforward question “What is the sum of z1 and z2?” with
only a correct or wrong answer and no scope for investigation, students are asked
to move z2 to the position so that the sum with z1 reaches a particular position in
the complex plane. Only in a later subtask (c) are students invited to undertake
some associated calculation by hand in the hope and expectation that they relate
movements on the computer screen to the written work and the theory involved. In
subtasks (d) to (f), students are explicitly invited to reflect on specific results to
develop more general awareness of complex number concepts related to addition. In
terms of Mason’s framework (2002), students are asked in Task 1 to apply the tactic
say what you see in a special case, to explore more special cases to see a pattern, and
then to generalise their findings. For the explorative phase, no suggestions are made
in the tasks; students work independently and follow their own strategy. Tutorial
lecturers circulate in the classroom, listen to what goes on in group work, encourage
students, and lead whole-classroom discussions. This collaborative aspect is part of
the pedagogic use of the task and not explicitly stated in the task itself.

10https://completemaths.com.autograph

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-15
https://completemaths.com.autograph
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Task 1

There are three complex numbers labelled z1, z2 and z.

z1 is to be kept fixed while z2 and z can be moved.
Select z2 and move it until z reaches the position 6 + 5j.

(a) What complex number is z2? Right click and “Unhide All” to check your

answer. The correct answer appears in green.

(b) What is the relationship between z1, z2 and z?
(c) Now calculate by hand:

With z1 = −3 + j and z = 6 + 5j, find z2 such that z1 + z2 = z.

(d) Re-load Task 1. Move z2 around the screen and notice how z changes as
a consequence. What is the geometric connection between z2, z and the

complex number z1 (which has stayed the same during your movements)?

(e) Now you are allowed to move both z1 and z2. Move these to different
locations but make sure that z still ends up being 6 + 5j. Make note of the

positions of z1 and z2. Does your geometric connect from (d) still hold?

(f) Repeat another four times so that you have five different pairs of values for
z1 and z2 with each of them making z to be at 6+5j. For all of these, what

is the relationship between z1, z2 and z and does your geometric relationship

still hold for each of them?

Figure 6.8. Screen shot of Autograph files and instructions for
the original Task 1 in the complex number arithmetic teaching unit,
used in the Loughborough Foundation programme.

6.5. Use of ICT in Student Inquiry

Much research has been done about the use of ICT in mathematics education,
especially at primary and secondary school level, and it has offered a range of theoret-
ical perspectives. Two volumes of the National Council of Teachers of Mathematics
(Blume & Heid, 2008; Heid & Blume, 2008), the 17th ICMI study (Hoyles & Lagrange,
2010), books in the Springer series called ‘Mathematics Education in the Digital Era’
(e.g., Leung & Baccaglini-Frank, 2017), and the proceeedings of the International
Conference on Technology in Mathematics Teaching (ICTMT) are good sources of
information. Many lessons have been learned; the most important ones are that

• use of ICT for improvement of the depth and quality of mathematics learning
is much more complicated than initially anticipated by proponents of tool use;

• ICT tools serve at a more fine-grained level many different goals in teaching
and learning of mathematics;

• task design of ICT-enhanced mathematical activities is a delicate, multi-
faceted issue; and

• the terrain of technology-supported education is rapidly changing and of-
fering new ways of engaging with mathematical thinking, but with didactic
theory development hardly keeping up with technological progress.
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ICT use in inquiry activities for students is even more complex because of the
twofold nature of inquiry learning, which can be described as inquiry as ends and
inquiry as means. The first of these sees inquiry as a set of instructional outcomes
for students that involve understanding of inquiry and abilities to do inquiry. In
the perspective that university study programmes should enable their students to
become literate in mathematics and ICT at the level that their discipline requires,
the dominant idea is that students should learn to use ICT tools that are commonly
used in their profession for doing mathematics. The use of R and Rstudio in the
basic mathematics and statistics course for biomedical sciences students, described in
Chapter 12, is a typical example in which this perspective plays an important role.

The second aspect of inquiry, inquiry as means, is related to inquiry as an in-
structional approach or pedagogy. The PLATINUM objective to promote conceptual
understanding through student inquiry is an example of this perspective. Teaching
units designed for this purpose use ICT tools as means to realise instructional goals
as best as possible. Task design emphasises in this case the mediating role of the
tools. In this section we look in detail at a PLATINUM example of this type of use
of ICT, namely the teaching unit about isometries and tessellations of the Euclidean
plane which has been developed for first-year mathematics programmes by the UCM
partners (Sáiz, 2020) and uses the dynamic mathematics environment GeoGebra.
But before doing this, we would like to stress that, despite the apparent distinction
between tool use in inquiry learning at university level, the two modes of tool use are
better not treated as opposite modes because one cannot do without the other: with-
out mathematical knowledge and skills and without inquiry abilities students will not
learn much from ICT-enhanced inquiry and, conversely, a scientific context is always
needed as a practice arena for inquiry abilities. For example, in Chapter 12, UvA
partners describe how the use of R and Rstudio enables their students to learn basic
concepts of Systems Biology in ways that would otherwise not be possible.

In this section we adopt the model of Pedaste et al. (2015) for IBME activities,
consisting of the phases Orientation, Conceptualisation, Investigation, Conclusion,
and Discussion, to discuss the use of ICT in student inquiry in these phases and in
particular in the teaching unit about isometries and tessellations of the Euclidean
plane developed by UCM partner as this may serve as a prototypical example. This
teaching unit, which takes about 5 hours of student work,11 consists of two parts:
thinking and learning about (1) planar isometries and (2) crystallographic groups and
tesselations in the plane. For details we refer to the documentation of this teaching
unit, which is available in the PLATINUM website (https://platinum.uia.no).

In the orientation phase, students are introduced to a domain of knowledge or a
subject of study. Tasks in this phase are designed to activate students’ prior math-
ematical and disciplinary knowledge, raise interest in the subject (relevance to the
discipline), and relate to the students’ background (e.g., skills, culture, and language).
Their main aims are to enable students to explore and analyse a given problem sit-
uation. ICT is in this phase typically used to practise prior skills and to provide
microworlds or simulations for initial exploration of the subject. The first part of the
UCM teaching unit about isometries, lasting about one hour, serves this purposes.
The dynamic geometry environment GeoGebra is in the first activities used to visu-
alise the effect of transformations on points and triangles so that students can draw
their own conclusions. Students are not given full access to the GeoGebra environ-
ment, but instead get tailormade GeoGebra applets to explore properties; see for

11Duration of work on the teaching unit about tesselations depends on whether students also

create their own tesselations and/or explore work of the Dutch artist M.C. Escher.

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
https://platinum.uia.no
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Figure 6.9. GeoGebra applet created by UCM partners for the
composition of a reflection and a translation in a direction perpen-
dicular to the mirror line. The result is a reflection in the translated
mirror line. Students can press dedicated buttons to carry out trans-
formation on objects in the plane, observe what happens, and formu-
late a hypothesis. On the left-hand side results of the initial settings
of the applet are shown; on the right-hand side results are shown for
a more general triangle obtained by dragging the original triangle.

example Figure 6.9 for two screen shots of an applet for composition of a reflection
and a translation in a direction perpendicular to the mirror line. The task designers
provide the students in this way with a microworld that (hopefully) helps them focus
in their work on the mathematical properties instead of the technicalities of the com-
puter environment. In terms of the framework of Kaput (1992) on computer use in
education, ICT is in this case for the task designers a toolmaker/mediummaker and
for the students an educational medium. The introductory activities about isometries
also prepare the students for using GeoGebra in their prospective inquiry work in
the second part of the teaching unit.

In the second part of the teaching unit, students explore planar tesselations, also
known as wallpaper patterns. A wallpaper pattern is a way to cover a flat surface with a
repeating pattern of shapes such that there are no overlaps or gaps and a translational
symmetry in two independent directions can be identified. Its symmetries can be
viewed as planar isometries and together they form a group, the symmetry group
of the pattern. Seventeen symmetry groups of planar patterns can be distinguished
(see, for example, Schattschneider, 1986). In the teaching unit seventeen GeoGebra
applets have been created, one for each symmetry group, and most of these activities
are inspired by the work of the Dutch artist M. C. Escher (1958)12 The task designers
connect mathematics with art in the hope and expectation that this motivates students
in their inquiry and let them study the underlying mathematics in an attractive way.
This is important for students as it helps them persevere as they engage in studying
the wallpaper patterns.

The first three GeoGebra applets allow students to visualise in a detailed way
how two of Escher’s tilings (Seahorse, No 88; Beetle, No 91) can be created from a
single tile by repeated application of generators of a matching group of isometries.
Figure 6.10 shows two screen shots to construct from an initial geometric shape (a
parallelogram) containing some black lines via rotations and translations a basic tile

12It is funny to see that Spanish task designers are inspired by a Dutch artist who himself got
inspired by islamic geometrical art during his visit to the Alhambra in Granada, Spain.
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(a seahorse) that can then be used to create a wallpaper pattern of seahorses with
symmetry group labelled p2 in the notation of the International Tables for X-ray
Crystallography.

Figure 6.10. GeoGebra applet created by UCM partners to help
students visualise in a detailed way how a seahorse wallpaper pattern
with symmetry group labelled p2 can be constructed from an initial
geometric shape containing lines. On the left-hand side is a screen
shot with the initial shape and on the right-hand side is a screen shot
with created seahorse shapes.

The construction of the basic tile is not explained in the applets; students have
to find this out by dragging the sliders acting on the initial shape and observing what
goes on. The upper slider rotates every black line that intersects the inner part of
the upper edge of the parallelogram about the midpoint of the upper edge, and at the
same time rotates every black line that intersects the inner parts of the left or lower
edge of the parallelogram about the midpoint of the lower edge. Hereafter the lower
slider acting on the initial shape translates all black lines that intersect the right edge
of the parallelogram and its imaginary extension along the vector from the lower right
vertex to the lower left vertex of the parallelogram, and at the same time translates all
black lines that intersect the left edge of the parallelogram and its imaginary extension
along the vector from the lower left vertex to the lower right vertex. The end result
of this whole process, shown in Figure 6.11, is the creation of the basic tile for the
wallpaper pattern, namely, the seahorse.

Figure 6.11. Screen shots that illustrate the creation of the basic tile
(a seahorse) for the wallpaper pattern from an initial shape through
a two-step procedure involving rotation and translation.

The inquiry is directed toward understanding the basic tile construction used by
Escher in his designs (cf., Schattschneider, 2010). It is followed by the generation
of parts of the wallpaper pattern by repeatedly applying generators of the matching
symmetry group. In both phases of the inquiry, the dynamic nature of GeoGebra
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helps students discover what the movement of the sliders actually means in terms of
geometrical changes in the plane. Focus is in both phases on conceptualisation.

For better understanding of techniques to generate a basic tile and a wallpaper
pattern from this tile students need to investigate more examples of wallpaper designs.
For this purpose, the designers of the tasks have created for each remaining symmetry
group a dedicated microworld that allows students to go through various stages of
this process by checking options in the applet. Figure 6.12 shows the applet for
investigating the symmetry group labelled p6, connected to Escher’s tiling Flying
Fish, No 99.

Figure 6.12. Screen shots illustrating the creation of the wallpaper
pattern of type cmm connected to Escher’s tiling Dragonfiles, No 13.

The conclusion and discussion phase of the teaching unit is a guided inquiry ac-
tivity in which students can use the full toolbar to complete a wallpaper pattern of
type p6m with all elements for creation of this tiling (reflection axes, rotation centres,
translation vectors, . . . ) already present in the applet; see Figure 6.13,

Figure 6.13. Screen shots illustrating the creation of the wallpaper
pattern of type p6m using the complete functionality of GeoGebra
given all elements needed for the creation of the tiling.

This progressive introduction to the use of GeoGebra from dedicated microworld
to a dynamic mathematics environment with all tools available is a deliberate choice
of the task designers. They do this because in past research studies they have experi-
enced that the wider diversity of approaches among students to explore configurations
and discover new geometric properties via GeoGebra is accompanied by an increase
in complexity of integrating technology into the classroom. Lecturer should take into
account the conditions of learning mathematics with GeoGebra and pay attention
to a genesis of and transition between figural, instrumental, and discursive reasoning
(Gómez-Chacón & Kuzniak, 2015; Gómez-Chacón et al., 2016). Task designers could
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help lecturers by designing effective teaching and learning paths with tasks that pro-
mote, support and sustain student inquiry. The PLATINUM project is built on the
idea that the best way for lecturers and task designers to achieve these goals is to work
together in a community of inquiry.

Step by step exposure of students to the full power of a dynamic mathematics
environment is one of strategies that have been found effective in promoting inquiry.
Another one is the inclusion of opportunities for exploration of mathematical ideas
by students in learning paths, that is, by inclusion of student activities in which
students pursue conceptual understanding of mathematics by posing and answering
questions as they do mathematical experiments, develop strategies, make conjectures,
and try to find evidence. The teaching unit of UCM partners contains plenty of such
tasks and follows the strategy of gradually exploring more complex situations through
GeoGebra applets, ending with a more open inquiry. The task sequence could still be
extended with activities in which students create their own basic tiles for own designs
of wallpaper patterns. This would be a fun challenge for students with artistic talents.

Dynamic mathematics environments such as GeoGebra have also been found
effective in promoting student inquiry by dynamically linking multiple representations
of mathematics objects. Part of mathematics literacy, and more generally scientific
literacy, is that one has developed representational fluency. Sandoval et al. (2000, p. 6)
provide the following comprehensive definition of representational fluency:

We view representational fluency as being able to interpret and construct various disci-

plinary representations, and to be able to move between representations appropriately.

This includes knowing what particular representations are able to illustrate or explain,

and to be able to use representations as justifications for other claims. This also includes

an ability to link multiple representations in meaningful ways.

Mathematicians and scientists often use multiple representations because

• different kinds of information can be conveyed with specific types of repre-
sentations (e.g., phenomena with simulations, animations, or video clips);

• interaction with multiple representations supports various ideas, strategies,
and processes in problem solving;

• different representations of a problem are seldom equivalent computationally,
even when they contain equivalent information; and

• use of multiple representations promotes deeper and general understanding.

We concur with Kaput (1992, pp. 533–543) that computer technology, through the
dynamic linking of representations and immediate feedback, can assist students in
their learning process from concrete experiences to ever more abstract objects and
relationships of more advanced mathematics and science, and can support visualisa-
tion and experimentation with aspects of investigated phenomena. Ainsworth (2008)
summarises a number of heuristics that could be used to guide design of effective
multi-representational systems:13

• minimise the number of representations employed and avoid too similar rep-
resentations (the coherence and redundancy principle);

• carefully assess the skills and experiences of the intended learners in order to
decide on support of constraining representations to stop misinterpretation
of unfamiliar representations, and to avoid unnecessary constraining repre-
sentations (pre-training principle);

13Between brackets we place labels of the connected principle(s) of multimedia learning listed
by Mayer (2020).
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• select an ordering and sequencing of representations that maximises their
benefits by allowing learners to gain knowledge and confidence with fewer
representations before introducing more (segmenting principle);

• consider extra support like help files, instructional movies, exercises, and
placement of related representations close to one another on the computer
screen, to help learners overcome the cognitive tasks associated with learning
with multiple representations (guided activity principle, worked-out example
principle, segmenting principle, modality principles, navigation principles,
spatial and temporal contiguity principle).

Several PLATINUM partners have done their best to use these design principles; you
may recognise them in the described teaching unit about isometries and tesselation
of the UCM partners or in the teaching unit on complex number arithmetic of the
LU partners with Autograph files that are kept as simple as possible. Figure 6.14
shows a GeoGebra applet used by UvA partners to illustrate how the phase plot of a
parametrised differential equation depends on the value of the bifurcation parameter
and what information is actually presented in the bifurcation diagram. Students (or
the teacher in a lecture) drag the triangle along the axis for the bifurcation parameter,
observe what happens on both sides of the applet, and draw conclusions (perhaps after
first using Mason’s ‘say what you see’ tactic). The GeoGebra applet is designed to be
as simple as possible, with no redundant information present, and with the multiple
representations close to each other to make it easier to observe changes in linked
representations. In other words, principles of multimedia learning are applied.

Figure 6.14. Screen shot of a GeoGebra applet used by UvA part-
ners to connect a bifurcation diagram with changes in phase plots of a
differential equation with a bifurcation parameter. Dragging the icon
for the bifurcation parameter changes both sides of the applet

6.6. Guiding Design Principles Identified in PLATINUM

As we have noted before in Section 6.3 and can also be read in Chapter 2 of the
book, there exist many views on inquiry-based mathematics education. Therefore it
comes to no surprise that there also exist many views on what makes a good inquiry-
based task for students. The examples shown in this chapter and the case studies in
Part 3 of this book illustrate a great variety of inquiry-based tasks. Yet some common
characteristics can be distinguished in the PLATINUM inquiry-based tasks (see also
Jaworski, 2015). They

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-2
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• provide easy access to mathematical ideas;
• are inclusive in the sense that they enable everyone to make a start and
inspire engagement by all;

• provide opportunity to ask questions, solve problems, imagine, and explore;
• encourage discussion and reasoning;
• encourage student centrality/ownership in/of the mathematics; and
• promote mathematical thinking.

The role of lecturers and teaching assistants while a small number of students work
on inquiry-based tasks can be characterised by words like

• circulating and listening;
• asking and encouraging students to ask questions;
• encouraging dialogue and/or debate;
• fostering reasoning; and
• prompting and challenging.

These ways of working are a big challenge for lecturers with large numbers of students.
PLATINUM partners have in these cases often used lectures to plant seeds for student
inquiry into a mathematical concepts by whole classroom discussions in which students
were invited to express their ideas developed in small group work with neighbours in
the lecture room. Hereafter students could dive more into the inquiry in tutorials
with smaller number of students. The teaching unit about data-driven numerical
differentiation presented in Section 6.5 is a good example of this approach.

The value of using ICT in mathematics education and in particular in student in-
quiry is manyfold. Like van Joolingen and Zacharia (2009) we distinguish the following
ingredients of computer-based inquiry activities:

• a mission for inquiry that introduces students to a domain of knowledge or
subject of inquiry;

• a source of information for inquiry that allows students to extract relevant
data needed for cognitive growth;

• tools for expressing knowledge in external forms;
• cognitive and social scaffolds to overcome the paradox that in order to learn
through inquiry, one needs the abilities that are acquired through the learning
itself.

In the design and implementation of ICT-enhanced inquiry activities goes much think-
ing and trying-out to the above ingredients.

Tasks in the orientation phase of student inquiry are designed to activate students’
prior mathematical and disciplinary knowledge, to raise interest in the subject or show
the relevance for the discipline, and to relate the mission for inquiry to the students’
background (e.g., skills, culture, and language).

The subject of an inquiry activity is a source of information that allows students to
extract relevant data. Students can obtain data from microworlds (like the GeoGebra
applets of the UCM partners or the Autograph files of the LU partners discussed
in the previous section), data logging tools (Heck, 2012), and from modelling and
simulation environments (like the use of Rstudio to explore dynamic systems in the
UvA case study presented in Chapter 12), to mention a few. Information sources play
a role in three inquiry phases of the framework of Pedaste et al. (2015), which is used
by PLATINUM partners to describe modelling activities (see Chapter 8): orientation,
conceptualisation, and investigation. In the orientation and conceptualisation phases
data are needed to shape one’s initial ideas. In the investigation phase data are needed
to test and deepen ideas.

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-8
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In the conceptualisation, investigation, conclusion and discussion phases of inquiry-
based learning (Pedaste et al., 2015) one needs tools to provide the means for represent-
ing, processing, and analysing new data or information. How could students otherwise
explain and justify their mathematical thinking, their solution strategies, and actions
in open-ended activities. These tools can be mathematical representations invented
or co-created by students as in inquiry-oriented mathematics education (Kuster et al.,
2018) or more widely-used standard mathematical representations. They can also be
mathematical constructions created in dynamic mathematics software environments
like GeoGebra, results of computer-based modelling and simulations, a spreadsheet,
report or presentation written with office tools, a computer-aided form of evidence,
and so on. Thus, ICT offers opportunities for mediating the learning activities in
which students engage (cf., Sfard & McClain, 2002).

The paradox that in order to learn through inquiry, one needs skills that are ac-
quired through the learning itself, is similar to what is called the learning paradox
(Bereiter, 1985). In ICT-enhanced teaching and learning of mathematics it means
that tools enable, mediate and shape mathematical thinking, while being themselves,
at least to some extent, a product of these processes. An instrumental approach to
digital tool use in mathematics education (Trouche, 2020a,b) is one of the theoretical
frameworks developed to address the problems that may arise when one starts to use
a ready-made computer tool and explains the importance of aligning techniques that
emerge in problem situation with the techniques available in the computer tool. The
UvA partners have used this framework to understand the difficulties with program-
ming in R and working with Rstudio of their students, and to make improvements in
their instructional materials (see Chapter 12). They use cognitive scaffolds to struc-
ture R-based tasks, and they give hints and supporting information for these tasks.
But such cognitive scaffolds can also be provided to students in other computer-based
inquiry activities. In addition, social scaffolds can provide students with means for
coordinating and streamlining collaboration with others, such as tools to visualise
contributions to a shared knowledge building process, concept maps in the orientation
phase of a student inquiry, a shared use of a glossary, a teacher-led classroom dis-
cussion of mathematics with a digital whiteboard for notes, figures, or mathematical
representations. In case studies described in Part 3 of this book one can find accounts
of classroom discussions with students during inquiry activities.

6.7. Accessibility of Teaching Units for Students With Identified Needs

One of the goals of Intellectual Output 3 of the PLATINUM project is the ex-
ploration of possibilities to make teaching units accessible for students with needs.
We refer to Chapter 4 for an introduction to teaching and learning of students with
identified needs. It also introduces the principles of Universal Design, a methodology
adopted by PLATINUM partners to strive for an inclusive learning environment reach-
ing the needs of as many students as possible. These principles have been worked out
for an educational context as Universal Design for Learning (UDL) and general UDL
guidelines are presented in Section 4.6. Below we look at how the UDL principles have
guided PLATINUM partners in the design of inquiry tasks.

The first UDL principle is the use of multiple means of representation (not to be
mixed up with the notion of multiple representation). Students differ in the ways that
they perceive and comprehend information presented to them. At the extreme are
students with impairments (e.g., those who are blind or deaf), for whom some forms
of presentation are completely inaccessible. In task design one could spend time and
thought on how to adapt an inquiry task for students with such identified needs. For

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-4
https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-4
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example, the dice sheet in the teaching unit of the MU partners cannot be used by
visually strongly impaired students, but the information on the sheet could also be
given in the form of a table with pairs of numbers that represent the number of dots on
each dice. Such a table can be processed by a screen reader and transformed to speech
output or brailled. More prevalent are students who, because of their particular pro-
file of perceptual or cognitive strengths and deficits, find information in some formats
much more accessible than others (e.g., students with dyslexia, aphasia, or mental
retardation). Students coming from different cultural backgrounds and with native
languages different from the instructional language used can have difficulty accessing
information when words and symbols are not clearly defined. To best support all stu-
dents, teaching units should include definitions of all requisite variables, symbols, and
vocabulary. Certainly in the field of mathematics there is beside convention also much
ambiguity in mathematical representations, and one can be best be open to students
about this and emphasise that this is also a strong point of mathematical language.
Anyway, the first principle reflects the fact that there is no one way of presenting
information or transferring knowledge that is optimal for all students. Multiple means
of representation are key. UvA partners (see Chapter 12) have for example provided
several options for perception and comprehension in their instructional materials: all
video clips taken from the UK Mathcentre and used in the online instructional materi-
als offer closed captioning; GeoGebra applets can be reset and maximised to fill the
entire screen; chapters with background knowledge such as expected prior mathemat-
ical knowledge are online available in the course material and students can practise
herein skills that they were supposed to possess already; page layout includes high-
lighting of key words, framing of important statements and randomised examples, and
hiding/opening of extra information. But in the end, multiple means of representa-
tion is not just a matter of design of instructional materials. Lecturers also play a role
herein by the way they highlight critical features, emphasise big ideas, connect new
information to prior knowledge, and so forth. They can lead a whole class discussion
before students work through an inquiry activity to activate prior knowledge

The second useful UDL principle is the use of multiple means of action and ex-
pression. Students differ in the ways they can navigate a learning environment and
express what they know. Students do not share the same capacities for action within
or across domains of knowledge. Some students have specific motor disabilities (e.g.,
cerebral palsy) that limit the kinds of physical actions they can take, as well as the
kinds of tools that they can use to respond to or construct knowledge. Other students
lack the strategic and organisational abilities required to achieve long-term goals in an
inquiry (e.g., students with executive function disorders or ADD/ADHD). Moreover,
many students can express themselves much more skilfully in one medium than in
another (using drawing tools as opposed to writing and reading print, for example).
Therefore, in task design one has to make sure that there are alternatives for students’
means of expression or that one maximises the accessibility of tools. For example, the
UvA partners explain in their case study in Chapter 12 how they pay attention to
these aspects in the design of their ICT tools. But scaffolds and supports at univer-
sity level can also include optional readings, i.e., readings providing either background
information or more advanced discussion of course topics, to address students with
different levels of prior knowledge. Support of student planning and strategy develop-
ment can be incorporated in tasks by adding questions like “Stop and think,” “Make
a guess,” “Verify your answers,” “Look for another possibility.” “Give an example,”
and “Explain your reasoning.” In terms of Mason’s framework (2002) one adds ques-
tions that trigger students innate powers of mathematical thinking and doing. But

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-12
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like before, multiple means of expression is not just a matter of design of instructional
materials. Lecturers also play a role herein by the way they select multiple media for
communication, how they guide appropriate goal-setting in an inquiry activity, how
they manage information and resources, what tools they select for students to use,
and so forth.

The third UDL principle is the use of multiple means of engagement. Students
differ markedly in the ways in which they are engaged or motivated to learn. Some
students are engaged by risk and challenge, while others seek safety and support. Some
are attracted to dynamic social forms of learning and to collaboration with peers, and
others shy away and prefer to work on their own. There is no single means of engaging
students that will be optimal across the diversity that exists. Moreover, not all students
are engaged by the same extrinsic rewards or conditions, nor do they develop intrinsic
motivation along the same path. Therefore, alternative means of engagement are
critical. In the design of an inquiry task, one can provide options for sustaining effort
and persistence such as varying demands and resources to optimise challenge, fostering
collaboration and community, clarifying expectations and structuring of group work,
and increasing mastery-oriented feedback. In the design of UvA courses that use
SOWISO as environment for learning, practising and assessing mathematics (Heck,
2017) increased mastery-oriented feedback is realised by providing students always
randomised exercises with automated feedback. But often it is also an option to make
a task more engagement-neutral. For example, in the numerical differentiation task
of UvA partners shown in Figure 6.5, in the task sequence about rules of probability
of MU partners shown in Figure 6.7, and in the task sequence about complex number
arithmetic of LU partner shown in Figure 6.8, no words are spent on whether these
are individual tasks or small group tasks. Although the task designers in PLATINUM
may have thoughts about and suggestions for learning arrangements and may have
specified these in documentation of the teaching unit, the decision on how to engage
students is in the discussed case left to the lecturer who wants to use these tasks with
her/his students.

Because more and more instructional materials become web-based and contain
digital contents, task designers better look at the basic principles of web accessibility
made up by the World Wide Web Consortium. This consortium organises a wide
variety of recommendations for making web-content more accessible for people with
disabilities (World Wide Web Consortium, 2018). Although these guidelines are made
for design of web pages, they can also be generally applied to the design of any digital
content (e.g., GeoGebra applets, simulation environments, etc.).

Multiple studies (cf., Scanlon et al., 2021, plus references herein) show that there is
a world to win because many webpages used in higher education still have numerous
accessibility errors and are not compliant with current Web Content Accessibility
Guidelines. We expect the same for digital content in general. This is not because of
unwillingness of authors to make their webpages or digital content more accessible, but
is caused by lack of knowledge, unfamiliarity with principles of multimedia learning,
and/or insufficient time or effort to pay enough attention to accessibility. The situation
is not different for the use of Universal Design for Learning: multiple studies (cf.,
Schreffler et al., 2019, plus references herein) show that Universal Design for Learning
is still not widely used in postsecondary STEM education after the Center for Applied
Special Technology14 (CAST) introduced its first UDL Institute for educators in 1998.

We give an example from the PLATINUM project to illustrate how UDL principles
can help task designers change an existing inquiry task and make it more accessible

14www.cast.org

https://www.cast.org
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for students with identified needs. Figure 6.15 shows a new version of the first task in
the complex number arithmetic teaching unit developed by LU partners after applying
some UDL principles. Looking back at the original task in Figure 6.8, there are many
instructions divided over six subtasks; they are very detailed and use a lot of words.
This was also reflected in the feedback from students using the task. Dyslexic students
told that they lost track during their work. UDL principles and guidelines are of help
here. The first thing one could do is reduce the number of instructions and length of
text so that it is shorter, there is less to read, and it seems that there is less to do, even
though the task overall has not changed (only the task presentation has changed).

The next improvement is the addition of approximate times, for each subtask and
the task overall. This helps students with autism spectrum disorder including Asperger
syndrome, who need a bit more structure and like to know some boundaries in the
time to spend on tasks; otherwise they might end up spending too much time. But it
also helps students in general, because managing the time in an activity is something
many first-year students still have to get used to. Giving a time limit for a task one
helps students better understand how far to take the task. But setting time limits for
the subtasks and the task overall also helps a task designer or lecturer think about
how realistic the demands on students are given the time constraints of study.

A further improvement is adding colours to the variables and mathematical for-
mulas in the instructions and letting them match to the colours in the Autograph
files. It is often helpful for dyslexic students to keep track of their work. But the same
holds for students in general: adding colouring may help reduce cognitive load while
extracting information from multiple linked representations (cf., Ainsworth, 2008).

New Task 1: less wordy, with times and colours

Task 1: (Total time 15-20 mins.)

Open the Autograph file Task 1.

There are three complex numbers labelled z1, z2 and z.
z1 is to be kept fixed while z2 and z can be moved.
Select z2 and move it until z reaches the position 6 + 5j.

(a) What complex number is z2?
Right click and “Unhide All” to check your answer. (2–3 mins.)

(b) What is the geometrical relationship between z1, z2 and z?
(2–3 mins.)

(c) Now calculate by hand: With z1 = −3 + j and z = 6 + 5j, find z2
such that z1 + z2 = z. (2–3 mins.)

(d) Re-load Task 1. Move z2 around the screen and notice how z changes.
Describe the position of z in relation to z1 and z2. (5 mins.)

(e) Explore this relationship. Move z1 and z2 to different locations but
make sure that z still ends up being 6 + 5j. Does what you thought
in (d) still hold? (5 mins.)

Figure 6.15. Instructions in Task 1 about addition of complex num-
bers, with the same Autograph files as in Figure 6.8, after applica-
tion of some UDL principles (coloured version in the ebook).

6.8. Concluding Remarks

As was noted before and also becomes clear when reading the second chapter of
this book and the case studies in Part 3, there is no unique view on inquiry-based
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mathematics education (IBME). But the following broad conceptualisation of IBME
of Artigue and Blomhøj (2013, p. 808) covers the perspectives of PLATINUM partners:

An educational perspective which aims to offer students the opportunity to experience
how mathematical knowledge can be meaningfully developed. Thus, IBME becomes
a powerful means of action, through personal and collective attempts at answering
significant questions, making these experiences not just anecdotal but inspiring and
structuring for the entire educational enterprise. As for IBSE,15 inquiry-based prac-
tices in mathematics involve diverse forms of activities combined in inquiry processes:
elaborating questions; problem solving; modelling and mathematising; searching for
resources and ideas; exploring; analysing documents and data; experimenting; conjec-
turing; testing, explaining, reasoning, arguing and proving; defining and structuring;
connecting, representing and communicating. These actions contribute to the students’
knowledge and competences, but also to the formation of habits of mind for inquiry.

Artigue and Blomhøj (2013, p. 797) relate these actions to processes of inquiry of
mathematicians and scientist:

Inquiry-based pedagogy can be defined loosely as a way of teaching in which students
are invited to work in ways similar to how mathematicians and scientists work.

As we have seen, various theoretical frameworks support the conceptualisation of
IBME and its implementation in practice. This diversity in the conceptualisation
of IBME and supportive framework explains the diversity in the teaching units de-
veloped by PLATINUM partners. But they have one thing in common: all have
been designed to promote conceptual understanding of mathematics through student
inquiry. This means that in all teaching units the purpose of inquiry is to engage
students deeply with concepts that they should learn or develop, in contrast with pro-
cedural learning or learning by rote. The concepts with which the students engage are
already well-known and valued in mathematics and science, and have become essential
ingredients of mathematical literacy. This contrasts with the purpose of inquiry for
research mathematicians and scientists: they engage deeply with concepts to create
new knowledge in their field of interest. Levy and Petrulis (2012) also distinguish
between these purposes of inquiry and refer to them as inquiry for learning, when one
explores what is already known, and inquiry for knowledge building, when the purpose
is to build new knowledge. Most PLATINUM teaching units are aligned with inquiry
for learning, in the form of guided or structured inquiry activities in which the lecturer
acts as a facilitator of learning rather than as a source of information.

In addition, many PLATINUM teaching units have in common the use of ICT in
inquiry activities. This, at first sight, is not surprising: mathematicians and scientists
use ICT in inquiry and thus, if the goal is to let students work in ways similar as
these professionals do, it is natural to let students use ICT as well. But there is an
important difference: mathematicians and scientists use very sophisticated ICT tools
that require deep knowledge of mathematics and their scientific discipline in order to
use the tools successfully; most students lack the required mathematical and scientific
knowledge and therefore need simpler ICT tools or a learning path for using the more
sophisticated tools. The designers of tasks and teaching units in PLATINUM often
use dynamic mathematics environments like GeoGebra and Autograph to create
for their students more dedicated and simpler tools for inquiry-based learning.

Important to the design of effective inquiry tasks and teaching units are the three-
layer model of inquiry outlined in Chapter 2 (cf., Jaworski, 2019) and the notion of
community of inquiry (CoI). Designs of mathematical activities for student inquiry
improve when those involved have inquired into

15IBSE is an acronym of inquiry-based science education.

https://doi.org/10.5817/CZ.MUNI.M210-9983-2021-2
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• the mathematical concepts with which students are supposed to engage in
an inquiry way,

• IBME approaches to teaching and learning of the mathematical concepts,
and into

• research findings of educators about IBME.

These three types of inquiry are often too much work for a single person and a commu-
nity of inquiry is needed. Ideally such a community of inquiry comprised of different
members in the field (e.g., discipline-based and/or general educational researchers,
specialists in supporting students with identified needs, educational technologists,
experts in mathematics and/or the field of application, students, etc.) so that shaping
and implementing ideas for inquiry tasks can be taken to a higher level through collab-
oration of members of a CoI. Effort in task design is more sustainable when working
in a team.

Sustainability of task design is fostered by documenting the work. Not only is
documentation important for designers to keep track of discussions within the team
and of design and implementation choices made, but it is important also for other
lecturers who want to use or adapt tasks, or who simply want to be informed or
inspired. For this reason we have included in this chapter tasks or task sequences
developed by PLATINUM partners that exemplify design processes. The case studies
presented in Part 3 are more detailed accounts of the partners’ explorations of IBME
at university level, and of their creation and use of teaching units for inquiry by their
students. We hope that the case studies and this chapter on the design of inquiry
activities inspire university lecturers to undertake similar explorations of IBME in
their own practice.
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