Inquiry in University Mathematics Teaching and Learning. The Platinum Project



Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45(6), 797–810.

Blomhøj, M., & Højgaard Jensen, T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22(3), 123–139.

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–8.

Blum, W., & Leiß, D. (2007). How do students’ and teachers deal with modelling problems? In C. Haines, P. Galbraith, & W. Blum (Eds.), Mathematical modelling: education, engineering and economics (pp. 222–231). Horwoord.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.

Brousseau, G. (2002). Theory of didactical situation in mathematics (N. Balacheff, M. Cooper, R. Sutherland & V. Warfield (Eds. & Transl.). Kluwer Academic Publishers.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Biological Sciences Curriculum Study(BSCS)

Byers, W. (2007). How mathematicians think: Using ambiguity, contradiction, and paradox to create mathematics. Princeton University Press.

Chevallard,  Y.  (1999).  L’analyse  des  practiques  enseignantes  en  théorie  anthropologique  du  didactique. Recherches én Didactique des Mathmatiques, 19(2), 221–266.

de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201.

Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. D. C. Heath and company

Dewey, J. (1938). Logic: The theory of inquiry. Holt, Rinehart and Winston.

Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41(2), 143–163.

Dorier, J.-L. (2006). An introduction to mathematical modelling: An experiment with students in economics. In M. Bosch (Ed.), Proceedings of the fourth Congress of the European Society for Research in Mathematics Education (pp. 1634–1644). FUNDEMI IQS—Universitat Ramon Llull. WG13.pdf

Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Kluwer Academic Publishers.

García, F. J. , & Ruiz, L. (2006). Mathematical praxeologies of increasing complexity: Variation systems modelling in secondary education. In M. Bosch (Ed.), Proceedings of the fourth Congress of the European Society for Research in Mathematics Education (pp. 1645–1654). FUNDEMI IQS—Universitat Ramon Llull. WG13.pdf

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

Hernandez-Martinez, P., Thomas, S., Viirman, O., & Rogovchenko, Y. (2021). ‘I’m still making dots for them’: Mathematics lecturers’ views on their mathematical modelling practices. International Journal of Mathematical Education in Science and Technology, 52(2), 165–177.

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310

Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multi- variable causality. Journal of Research in Science Teaching, 40(9), 898–921.

Pedaste,  M.,  Mäeots,  M.,  Siiman,  L.,  de  Jong,  T.,  van  Riesen,  S.,  Kamp,  E.,  Manoli,  C.,  Zacharia, Z., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61.

Rogovchenko, S. (2021). Mathematical modelling problems in a mathematics course for engineers: A commognitive perspective, In: F. Leung, G. Stillman, G. Kaiser & K. Wong (Eds.), Mathematical modelling education in east and west (pp. 561–570). Springer Verlag.

Rogovchenko, Y., Viirman, O., & Treffert-Thomas, S. (2020). Joy of mathematical modelling: a forgotten perspective? In G. Stillman, G. Kaiser & C. Lampen C. (Eds.), Mathematical modelling education and sense-making (pp. 95–106). Springer Verlag.

Sfard, A. (2008). Thinking as communicating. Cambridge University Press.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). MacMillan Publishing Company.

Stemhagen, K., & Smith, J. (2008). Dewey, democracy, and mathematics education: Reconceptualizing the last bastion of curricular certainty. Education and Culture, 24(2), 25–40.

Stillman, G. A. (2015). Applications and modelling research in secondary classrooms: What have we learnt? In S. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 791-805). Springer Verlag.

Treffert-Thomas, S., Rogovchenko, S., & Rogovchenko,  Y. (2018). The use of nonstandard problems  in  an  ODE  course  for  engineering  students.  In  E.  Bergqvist,  M.  Österholm,  C.  Granberg & L. Sumpter (Eds.), Proceedings of the 42nd conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 283–290). IGPME.

Treffert-Thomas, S., Viirman, O., Hernandez-Martinez, P., & Rogovchenko, Y. (2017). Mathematics lecturers’ views on the teaching of mathematical modelling. Nordic Studies in Mathematics Education, 22(4), 121–145.